

Submitted in fulfillment of the requirements for the degree of

Master of Science in Computer Science:

Computer Networks and Distributed Systems

Elaborate Energy Consumption Modelling for

OpenWSN

Bruno Van de Velde

Adviser: Jeroen Famaey

Supervisor: Glenn Daneels

Esteban Municio

Faculty of Science

2017

Contents

1 Introduction 1

1.1 Time-Slotted Channel Hopping 2

1.2 The importance of energy models 4

1.3 Contributions . 4

1.4 Thesis organization . 5

2 Background and related work 6

2.1 OpenMote hardware . 6

2.2 6TiSCH . 9

2.3 Energy models . 11

3 Methodology 13

3.1 Firmware changes . 13

3.2 Measuring energy consumption 17

3.3 Measuring state durations . 22

4 Model 25

4.1 Time slots . 25

i

CONTENTS ii

4.2 Building the model . 30

4.3 Support for different hardware 31

5 Results 33

5.1 State durations . 33

5.2 Device state consumption . 34

5.3 Slot consumption . 37

5.4 Slot frame consumption . 39

6 Conclusion 42

6.1 Future work . 42

Bibliography 44

Appendices 48

A Time slot states 49

B Duration of states in time slot 53

C Time slot comparion: model vs. measurement 58

Acknowledgements

I would like to thank Glenn Daneels and Esteban Municio for their guidance
and feedback on the thesis. I would also like to thank Glenn Ergeerts for
his help with the measurement setup. Finally, I would like to thank Prof.
Famaey for the opportunity of writing this thesis.

iii

Summary

A network consisting of devices running on batteries only has a limited life-
time. In order to extend how long the network can remain operational, the
energy consumption of the devices in the network has to be minimized. Time
slotted channel hopping (TSCH) is a reliable and ultra-low power medium
access control technology that can be used for such networks.

In this thesis an energy consumption model for IEEE802.15.4e TSCH net-
works is provided, focussing on devices running the OpenWSN firmware. By
identifying all network-related CPU state changes, our model provides a good
representation for the device behavior and can be used to accurately predict
the energy consumption when the model is used in a simulation.

Experimental verification of our model showed that the consumptions calcu-
lated by our model differs less than 1% compared to the measured consump-
tions. This difference includes measurement inaccuracies and the variations
of the guard time. Only the remaining part of the difference is due to the
simplifications that have to be made to be able to make a model from of a
complex real-life situation.

Our model provides accurate energy consumption predications and is there-
fore suitable for 6TiSCH simulations with OpenWSN.

We also contributed a driver for the CC1200 radio chip on the OpenUSB
hardware to the OpenWSN firmware project, which allows experimenting on
the sub-1GHz band.

iv

List of Abbreviations

6top 6TiSCH Operation Sublayer

ACK acknowledgement

AEM Advanced Energy Monitor

AGT Acknowledgment Guard Time

ASN Absolute Slot Number

IoT Internet of Things

MAC Medium Access Control

PGT Packet Guard Time

SFD Start of Frame Delimiter

SoC System on Chip

SWO Serial Wire Output

TSCH Time-Slotted Channel Hopping

WSN Wireless Sensor Networks

v

List of Tables

3.1 CC1200 radio configuration used to achieve a bit rate of 250
kbps . 16

3.2 CC1200 power modes when not receiving or transmitting . . . 16

4.1 States in a TxDataRxAck slot 26

5.1 Consumption of different device states when using the CC2538
radio . 35

5.2 Consumption of different device states when using the CC1200
radio . 36

5.3 Measured and calculated consumption for each slot type, in µC 38

5.4 Measured and calculated slot frame consumption, in µC 41

A.1 States in a Sleep slot . 49

A.2 States in a RxIdle slot . 50

A.3 States in a RxDataTxAck slot 50

A.4 States in a TxDataRxAck slot 51

A.5 States in a TxData slot . 51

A.6 States in a RxData slot . 52

vi

LIST OF TABLES vii

A.7 States in a TxDataRxAckMissing slot 52

B.1 Timing constants used in OpenWSN, in µs 54

B.2 Duration of states in the Sleep slot, in µs 54

B.3 Duration of states in the RxIdle slot, in µs 55

B.4 Duration of states in the RxDataTxAck slot, in µs 55

B.5 Duration of states in the TxDataRxAck slot, in µs 56

B.6 Duration of states in the TxData slot, in µs 56

B.7 Duration of states in the RxData slot, in µs 57

B.8 Duration of states in the TxDataRxAckMissing slot, in µs . . . 57

List of Figures

1.1 Slot frame schedule example 3

1.2 Topology of example network 3

1.3 Slot frames are repeated . 3

2.1 OpenMote hardware ecosystem. From left to right: OpenMote-
CC2538, OpenBattery, OpenBase, OpenUSB 7

2.2 OpenUSB Rev.D . 8

2.3 6TiSCH stack . 9

2.4 OpenVisualizer web view . 11

3.1 Interrupt timing in IEEE 802.15.4 frame 15

3.2 Giant Gecko connected to the OpenUSB 18

3.3 N6705B DC Power Analyzer 19

3.4 Giant Gecko connected to the OpenUSB to measure durations 22

4.1 General states in TxDataRxAck and RxDataTxAck time slots 25

4.2 States in a TxDataRxAck slot 27

4.3 States in a RxDataTxAck slot 28

viii

LIST OF FIGURES ix

4.4 States in a TxData slot . 29

4.5 States in a RxData slot . 29

4.6 States in a RxIdle slot . 29

4.7 States in a TxDataRxAckMissing slot 30

5.1 Comparison between calculated (left) and measured (right)
TxDataRxAck time slot when using the CC2538 (top) and
CC1200 (bottom) radios . 38

5.2 Topology used while comparing the consumption of a slot frame 39

C.1 Comparison between calculated (left) and measured (right)
TxDataRxAck time slot when using the CC2538 (top) and
CC1200 (bottom) radios . 59

C.2 Comparison between calculated (left) and measured (right)
RxDataTxAck time slot when using the CC2538 (top) and
CC1200 (bottom) radios . 59

C.3 Comparison between calculated (left) and measured (right)
TxData time slot when using the CC2538 (top) and CC1200
(bottom) radios . 60

C.4 Comparison between calculated (left) and measured (right)
RxData time slot when using the CC2538 (top) and CC1200
(bottom) radios . 60

C.5 Comparison between calculated (left) and measured (right)
RxIdle time slot when using the CC2538 (top) and CC1200
(bottom) radios . 61

C.6 Comparison between calculated (left) and measured (right)
Sleep time slot when using the CC2538 (top) and CC1200
(bottom) radios . 61

Elaborate Energy Consumption Modelling for
OpenWSN

Bruno Van de Velde
University of Antwerp

IDLab,
Departement of Mathematics

and Computer Science

Glenn Daneels
University of Antwerp

IDLab,
Departement of Mathematics

and Computer Science

Esteban Municio
University of Antwerp

IDLab,
Departement of Mathematics

and Computer Science

Jeroen Famaey
University of Antwerp

IDLab,
Departement of Mathematics

and Computer Science

Abstract—In this paper an energy consumption model for
IEEE802.15.4e TSCH networks is provided, focussing on devices
running the OpenWSN firmware. By identifying all network-
related CPU state changes, our model provides a good represen-
tation for the device behavior and can be used to accurately
predict the energy consumption when the model is used in
a simulation. Experimental verififcation of our model showed
that the consumptions calculated by our model differs less than
1% compared to the measured consumptions. This difference
includes measurement inaccuracies and the variations of the
guard time. Only the remaining part of the difference is due to the
simplifications that have to be made to be able to make a model
from of a complex real-life situation. Our model provides accurate
energy consumption predications and is therefore suitable for
6TiSCH simulations with OpenWSN.

I. INTRODUCTION

As the popularity of the Internet of Things (IoT) grows,
Wireless Sensor Networks (WSN) are becoming more popular
and this leads to many challenges [1].

One major challenge is minimizing the energy consumption
of the devices in the network (which are referred to as
“motes”). Whether the military is monitoring an area to detect
enemy intrusion or whether the concentration of dangerous
gases in measured in industrial plants, the goal is to have
motes that can run for many years on a small battery. It is
easy to see that reducing the power consumption has a lot of
benefits. The battery will last longer so it takes longer before
the motes or their batteries have to be replaced. Alternatively
the lifetime could be kept the same but the mote could be
made even smaller as less space is required for the battery.
There are also cases where it is hard or infeasible to replace
the motes once their battery has run out, e.g., if “smart dust”
[2] is deployed over an entire region.

One thing we can do to reduce the consumption is having
a more energy-efficient Medium Access Control (MAC) proto-
col. If the mote has to be listening on its radio the whole time
then it will consume a lot more power than when it only wakes
up at the time another mote is transmitting. We therefore need
a MAC protocol that reduces the time where the radio is active
and increases the amount of time during which the mote can
sleep. Many such protocols were developed over time [3], one
of them being the MAC layer from IEEE 802.15.4 [4].

The IEEE 802.15.4e MAC amendment to the existing
IEEE 802.15.4 standard enhances and adds functionalities to

Fig. 1. Slot frame schedule example

this MAC layer [5]. One of the newly added modes that
was designed for low-power devices is Time-Slotted Channel
Hopping (TSCH). This mode is mostly suited for multihop
mesh networks. The time-slotted access makes the latency
bounded and predictable and provides motes with a guaranteed
bandwidth. By using multiple channels the capacity of the
network can be increased and the channel hopping improves
the reliability. TSCH networks can achieve 99.999% reliability
[6] while providing a deterministic performance and energy
consumption.

A. Time-Slotted Channel Hopping

In TSCH networks, time is divided into time slots. Each
slot provides enough time to transmit a MAC frame of the
maximum size followed by an optional acknowledgement
(ACK) frame indicating that the MAC frame was successfully
received. During every time slot multiple channels can be used
simultaneously, leading to a 2-dimensional grid of cells called
a slot frame.

Fig. 1 shows an example of a slot frame with 5 channels
and 4 time slots, for 8 motes labelled A to H. Each cell in
the grid represents a specific time slot and channel offset
in which a directed communication between motes can be
assigned. These assigned cells can either be dedicated to a
single transmitter, or they can be shared between multiple
motes (like G → F and H → F in the example). A shared
cell can be useful for sporadic or unpredictable traffic.

The slot frames are continuously repeated over time. The
cells in the slot frame can however still be updated dynami-
cally, so not every slot frame has to be identical. The schedulex

of the slot frames is synchronized across all motes, so they
know in which slot to transmit, receive or sleep.

TSCH also uses channel hopping to combat multi-path
fading and external interference [7]. This channel hopping
depends on the Absolute Slot Number (ASN) and the amount
of channels. If the slot frame size (amount of slots in a
single slot frame) is not a prime number, it may therefore
be possible that not every frequency is used. The exact
frequency to communicate on is determined by frequency =
F ((ASN + channelOffset) mod nrOfChannels) where
F is a lookup table containing the set of available channels.

In this paper we only focused on TSCH in IEEE 802.15.4e
[8], but the research is also applicable to other protocols using
TSCH such as WirelessHART and ISA100.11a [9].

B. The importance of energy models

To develop MAC protocols we somehow need to measure
how well the protocol performs. We need a way to predict the
lifetime of the mote or be able to compare different MAC
protocols with each other. It is infeasible to perform large
scale tests with thousands of motes or to perform tests that
last several years. Instead we need an energy model that we
can use to simulate a network of any size. Having a realistic
energy model is crucial to optimize the energy consumption
of MAC protocols. Such models can also help with improving
the topology by showing which nodes are overloaded and will
run out of battery power before the others. The more accurate
the model, the more useful the results of the simulation will
be to predict real world consequences.

C. Contributions

We created an elaborate energy consumption model for
accurately predicting the energy consumption of motes running
OpenWSN firmware and forming a 6TiSCH network. Although
based on existing research, we built the model from the ground
up. Using the most recent firmware version and new hardware,
our model is more up-to-date than the existing ones. The model
takes more different states and types of time slots into account,
allowing to more accurately predict the energy consumption.

This model can be combined with the existing OpenSim
simulator in OpenWSN. This allows simulations to be run
that predict or analyze the energy consumption. Although the
python code of the model is written, this integration is left for
further research.

We also contributed a driver for the CC1200 radio chip on
the OpenUSB hardware to the OpenWSN firmware project.
This was necessary for us to use the hardware, but will also
allow others to make use of the hardware for other research.
Unlike the other supported radio chips which operate on the
2.4 GHz band, the CC1200 operates on the sub-1GHz band.

D. Paper organization

We start by providing an overview of what we used in
this research and point to similar research in Section II.
We elaborate on our model in Section III and compare it
with experimental measurements in Section IV to show how
accurate the model is. Our conclusions and future work can
be found in Section V.

Fig. 2. 6TiSCH stack

II. BACKGROUND AND RELATED WORK

In this section we provide an overview of the hardware,
software and protocols that we have used.

A. OpenMote hardware

We worked with the OpenMote, a modular open-hardware
ecosystem designed for the Industrial IoT [10]. The platform
was developed at UC Berkeley and was designed to efficiently
implement IoT standards such as the upcoming IETF 6TiSCH.

The OpenMote-CC2538 is the core of the OpenMote
hardware ecosystem. It is the most important component, the
other components (e.g., the OpenBattery) can be considered as
extensions to it. It features a TI CC2538 SoC that consists out
of a 32 MHz microcontroller with 32 kB of RAM available
and an IEEE 802.15.4-compliant 2.4 GHz radio.

The OpenUSB version that we worked with has a CC1200
radio chip. Unlike the CC2538 which contains a 2.4 GHz radio,
the CC1200 is a radio transceiver that operates on the sub-
1GHz band. This allows long-range communication between
the motes. The OpenUSB Rev.D used in this paper was a
preliminary board and is thus not identical to the OpenUSB
that is being sold and shipped, but they are equivalent.

B. 6TiSCH

6TiSCH is a protocol stack that tries to standardize IPv6
on top of the TSCH mode of IEEE 802.15.4e [11]. Above
the IEEE 802.15.4e TSCH layer sits the 6TiSCH Operation
Sublayer (6top) that allows a scheduling entity to manage the
TSCH schedule of the network. This layer is necessary to let
other IETF standards such as 6LoWPAN [12], RPL [13] and
CoAP [14] work together with IEEE 802.15.4e TSCH. The
protocol stack is shown in Fig. 2.

6top enables distributed scheduling in 6TiSCH networks
[15]. Motes can negotiate to add or delete TSCH cells in
the slot frame of their neighbor. For example, a mote can
request additional cells to its parent mote when its traffic
demand increases. Cells that are reserved like this are called
“soft cells”. 6top also supports centralized schedulers that canxi

allocate “hard cells” which cannot be dynamically reallocated
by 6top itself.

1) TSCH Slot Template: 6top allows changing slot types to
indicate that the mote should transmit, listen or put its radio
to sleep. For IEEE 802.15.4e we identified 7 different types
of time slots:

• TxDataRxAck: The mote sends a frame during this
time slot and receives an ACK when the data has been
received successfully.

• TxData: The mote sends a frame during this time
slot but does not expect an ACK (e.g., broadcast or
multicast frames such as DIO messages).

• RxDataTxAck: The mote listens and receives a frame
in this time slot and replies with an ACK to indicate
that it successfully received the frame.

• RxData: The mote listens and receives a frame in
this time slot but no ACK is send (e.g., broadcast or
multicast frames).

• RxIdle: The mote listens but does not receive a frame
in this time slot.

• Sleep: The mote does not transmit or receive during
this time slot.

• TxDataRxAckMissing: The mote sends a frame and
expects and ACK, but no ACK is received. This could
be caused by a collision of the data frame.

2) OpenWSN: OpenWSN is an open-source project that
implements the 6TiSCH standard [16]. This means that it
provides a complete protocol stack based on IoT standards
such as 6LoWPAN, RPL and CoAP. The hierarchical design of
the project makes it relatively easy to port the project to new
hardware platforms. Hardware drivers for the most common
motes are already available inside the OpenWSN project itself.

Next to the firmware, they also provide useful software,
such as the OpenVisualizer. Although the main use of the
OpenVisualizer project is to connect the OpenWSN network to
the internet, it also provides the ability to monitor the network.
The tool shows the internal state (neighbor table, scheduling
table, packet queue, etc.) of all the motes that are physically
connected to the computer running the OpenVisualizer. It
also has the ability to run simulated motes and to debug the
communication with Wireshark [17].

C. Energy models

As modelling the energy consumption is an important
subject, many papers have already been written about it.
Several of which have also dealt with the consumption of
TSCH networks.

Some works focused on specific features in TSCH. De
Guglielmo et al. analyzed the IEEE 802.15.4e TSCH CSMA-
CA algorithm that is used in shared time slots [18]. Papadopou-
los et al. investigated the impact of the guard time in TSCH
[19]. They made the guard time smaller when motes are closer
to their sink and concluded that it resulted in significant savings
in energy consumption without compromising the reliability of
the network.

Other works such as Juc et al. compared the TSCH and
DSME modes of 802.15.4e [20]. They found that the energy
consumption of TSCH tends to lie higher compared to DSME
mode. This is due to the large fixed guard time in TSCH and
because DSME can aggregate multiple ACKs and transmit a
single group ACK.

Finally, X. Vilajosana et al. presented an energy model
for TSCH networks, making use of OpenWSN for their
experimental validation [21]. The values from the model were
compared against measurements on GINA and OpenMote-
STM32 platforms.

Our research followed the same lines as the last men-
tioned paper, but with several differences and improvements.
OpenWSN is continuously updated and the current firmware is
different than the version from 2013. By using the OpenMote-
CC2538 and a preliminary OpenUSB Rev.D board, we also
used state-of-the-art hardware. Instead of looking at two dif-
ferent platforms, we focused on a single platform and studied
the differences between using a 2.4 GHz and a sub-1GHz
radio. We also explicitly looked at the difference in power
consumption between using a System on Chip (SoC) and the
case with a separate microcontroller and radio chip. All the
steps to reach the model are explained in detail, making this
research reproducible. This way, the model can still be used
for different types of hardware by simply changing some of
the measured values.

III. MODEL

In this section we introduce the model by showing the
different states in each time slot type and introduce the formula
to calculate the consumption of each slot.

A. Time slots

Fig. 3 presents a general overview of the activity of
a transmitter mote during a TxDataRxAck time slot and a
receiver mote during a RxDataTxAck time slot.

Our model divides each time slot into different states. Some
of the states seen in Fig. 3 consist of a part where the CPU
is active and a part where the CPU is sleeping, which is seen
as two different states in our model. The state of the radio
in our model only changes at moments when the CPU state
changes. This is of course a simplification as in the real world
the radio state changes a little before or after this moment,
typically while the CPU is active.

We only discuss the TxDataRxAck time slot in full de-
tail. The other slots are similar and we only talk about the
differences with the TxDataRxAck slot.

1) TxDataRxAck: Table I and Fig. 4 illustrate the different
states in a TxDataRxAck slot and what the CPU and radio
states are during each moment. In the figure, the CPU has
two states (Sleep and Active) while the radio has three states
(Sleep, Idle and Active). The radio being active refers to it
either being in Listen, Rx or Tx mode.

At the beginning of each time slot, the CPU wakes up
and performs the tasks required for any slot. This includes
incrementing the ASN and scheduling the next state dependingxii

Fig. 3. General states in TxDataRxAck and RxDataTxAck time slots

Fig. 4. States in a TxDataRxAck slot

TABLE I. STATES IN A TXDATARXACK SLOT

State in slot CPU State Radio State
TxDataOffsetStart Active Sleep
TxDataOffset Sleep Sleep
TxDataPrepare Active Idle
TxDataReady Sleep Idle
TxDataDelayStart Active Idle
TxDataDelay Sleep Tx
TxDataStart Active Tx
TxData Sleep Tx
RxAckOffsetStart Active Sleep
RxAckOffset Sleep Sleep
RxAckPrepare Active Idle
RxAckReady Sleep Idle
RxAckListenStart Active Idle
RxAckListen Sleep Listen
RxAckStart Active Rx
RxAck Sleep Rx
TxProc Active Idle
Sleep Sleep Sleep

on the type of the slot. The CPU then sleeps again during
TxDataOffset until the moment the radio is needed.

During TxDataPrepare, the radio wakes up, the channel
is set and the bytes to transmit are loaded into the radio.
The duration of this state is variable mainly because the time
to load the bytes depend on the frame size. Since this state
always starts at the same offset and has a variable duration,
there is some time left between the TxDataPrepare and the
actual transmission. During this TxDataReady state, the radio
is in Idle mode while waiting until it is time to transmit. To
minimize the energy consumption of the mote, the duration of
the TxDataReady state should thus be as small as possible.

The first byte behind the Start of Frame Delimiter (SFD)
has to be transmitted exactly TxOffset ms after the start of
the time slot. In order to do so, the time required to switch
the radio from Idle to Tx mode has to be taken into account.
The duration of the TxDataDelay equals the time between the
Tx command being sent to the radio and the moment the SFD
has been transmitted.

After the RxAckOffset that follows where the mote sleeps,
the RxAckPrepare state then prepares the radio again by
waking it up and setting the correct channel. Any time less

than the maximum duration of RxAckPrepare is then spent in
the RxAckReady state.

The ACK is transmitted exactly TxAckDelay ms after the
end of the TxData state. Because the clocks of the transmitting
and receiving mote may not be perfectly in sync, the ACK
might arrive slightly earlier or later than expected. The radio
is thus turned on at the start of the RxAckListen instead
of just in time for the data. If no ACK is received during
the Acknowledgment Guard Time (AGT) period, the mote
turns off the radio and considers the transmission failed. The
duration of the AGT is defined as 1000 µs in OpenWSN.
When the clocks between the motes are perfectly in sync, the
RxAckListen state has a duration of AGT/2 plus the time
to change the radio from Idle mode to Rx mode (which is
considered to be instantaneous in OpenWSN).

During the TxProc state, the ACK is read from the radio
and the transmission is considered successfully when the ACK
is valid. The mote also synchronizes its clock based on the
offset between TxAckDelay and the actual data reception
time, if the ACK came from its parent in the network graph.
For the remaining part of the time slot, both the CPU and radio
are in Sleep mode.

2) RxDataTxAck: This time slot can be considered the
opposite of the TxDataRxAck. The states to handle the data in
TxDataRxAck are found in handling the ACK in RxDataTx-
Ack and vice versa.

The guard time for the data is however larger than the
AGT that is used for ACKs. The Packet Guard Time (PGT)
determines how long the radio listens for the data before
the radio is turned off. When no data is received during the
PGT period, we classify the time slot as RxIdle instead of
RxDataTxAck. In OpenWSN, the PGT is defined as 2600 µs.

3) TxData and RxData: When no ACKs are required (e.g.,
for broadcasts), only the first half of the time slot is used.
During the TxData and RxData slots, the mote sleeps once
the data has been transmitted or received.

4) RxIdle: When the transmitter has no data to send, the
slot that could have been a TxDataRxAck becomes a Sleepxiii

slot. But on the receiver side a different type of slot is needed
to represent the behavior of the mote. The RxIdle slot occurs
when the receiver expects data but does not receive anything.
This behavior is not an error, it simply means that a slot was
reserved but the transmitter did not have any data to send at
that moment.

5) Sleep: In time slots where no data has to be transmitted
or received, the mote can sleep during the whole slot. The mote
only briefly wakes up at the start of the slot to e.g., increment
the ASN.

6) TxDataRxAckMissing: There are many error states in
OpenWSN. The code would get in such error state when e.g.,
the radio remains active too long or when the prepare state
lasts longer than the maximum allowed time. It is unlikely
that the code would end up in most of these error states unless
when there is a configuration issue. There is however one error
state which is likely to occur eventually: a missing ACK. In the
TxDataRxAck slot, data is transmitted and an ACK is received.
In the slot that we refer to as TxDataRxAckMissing, the ACK
is expected but not received.

B. Building the model

With all states per time slot identified and with the con-
sumptions and durations during each state measured, the model
can be built.

The consumption of a time slot is given by the following
formula. The resulting consumption is expressed as the charge
drawn from the battery, in Coulombs.

SlotCons =
∑

State∈Slot

duration(State) ∗ current(State)

If we apply this for all slot types and shorten the notation
of the terms then we find the formula below which calculates
the charge drawn for each different time slot.

∀Slot ∈ SlotTypes : QSlot =
∑

State∈Slot

∆tState ∗ IState

The unit of the duration is ms while the unit of the current
is mA. This means that the unit of the resulting charge is µC.

The model with consumptions of each slot type could
be used in a simulation where the consumption is increased
each slot as the simulation runs. To calculate the consumption
over time, having a model of the entire slot frame is more
practical. We did not build such a model ourselves but instead
relied on the existing model described in the “Slot-Frame
Energy Consumption Modeling” from the “A Realistic Energy
Consumption Model for TSCH Networks” paper [21]. The
charge drawn per slot in their calculations can be replaced
by the measurements performed in this paper and the formula
above.

C. Support for different hardware

Since the model has so many inputs, in order to use it for
different hardware, many numbers might have to be adapted.
This is necessary if a highly accurate simulation is needed with
such hardware. The model can however be easily simplified to
be used with different hardware more quickly, at the cost of

some accuracy. By setting the duration of short states to 0, the
model becomes easier to change as only the states that have
the most impact on the consumption will have to be updated.
Alternatively the duration can be estimated instead of measured
as most durations are very similar to the ones we measured
with the OpenMote hardware. The consumption of CPU and
radio also do not have to be measured, the values could be
taken from the datasheet. The result is a slightly less accurate
model, but no or few measurements have to be made to be
able to use the model to simulate any hardware.

IV. RESULTS

In this section we discuss the results of our measurements
and experimentally verify the accuracy of the model.

A. State durations

We measured the duration of each state in every time slot
where the CPU is active. The durations in which the CPU is
sleeping could then be trivially calculated.

States do not always have the exact same duration for a
variety of reasons. There could be multiple code branches
(different execution paths), the packet size could influence it
or the duration of an operation can simply be variable (e.g.,
waking up the CC1200 chip). Multiple measurements had to
be made to find a single duration that could be associated with
the state.

Changing the CC1200 mode from Sleep to Idle takes
between 246 and 343 µs, which causes every state where the
radio wakes up to have a variable duration. It only required
a few measurements to find that the median for waking up is
268 µs. However, we decided to use the average value instead
of the median because it would result in slightly more accurate
energy consumption prediction. To avoid being susceptible to
outliers, we measured the wakeup time over ten thousand times
and found an average of 273 µs.

For states with multiple code branches, the average dura-
tion was also taken. Since these are states where the radio is
not active, these small variations on the duration only have a
small impact on the total slot consumption.

To measure states where packets are loaded to and read
from the radio, we measured the duration before and after the
radio is accessed. We then separately measured the communi-
cation with the radio for different packet sizes (0 to 125 bytes
with steps of 25 bytes). We performed linear interpolation on
the measured durations to come up with a formula that works
for all packet sizes.

The duration of transmitting and receiving also depends on
the packet size. Since the radio has a baud rate of 250 kbps,
the time to transmit one bit is 4 µs, which makes the time to
transmit a byte 32 µs. We thus simply have to multiple the
amount of transmitted bytes with 32 µs to find the duration.
The PHY header byte and 2 bytes CRC also have to be
included as they are sent with the packet. We measured the
time between the start of frame and end of frame interrupts
to verify that we can use this calculation and found that on
average the error was only 0.13% with our measurements.xiv

TABLE II. CONSUMPTION OF DIFFERENT DEVICE STATES

CPU state Radio state Consumption (in mA)
CC2538 CC1200

Active Sleep 18.5253 18.5977
Active Idle 18.5253 21.0067
Active Listen 36.0883 43.3729
Active Rx 32.1613 57.3220
Active Tx 36.1228 59.3448
Sleep Sleep 12.1690 12.4005
Sleep Idle 12.1690 15.0322
Sleep Listen 29.6143 38.2895
Sleep Rx 25.5274 50.7769
Sleep Tx 29.6779 53.6732

To model the guard time we assumed that the clocks are
in sync. The packet thus always arrives exactly in the center
of guard interval in our model.

B. Device state consumption

We measured the consumption of the OpenMote-CC2538
while connected to the OpenUSB during different device
states. Since the CPU and radio are the two components
responsible for the majority of the energy consumption, these
device states are all combinations between CPU and radio
modes. Instead of measuring the consumption of the CPU and
radio separately, we measured the consumption of the entire
device. The result is that any energy consumption not related
to the CPU or radio (e.g. SPI or timers) are measured as
part of the CPU usage. This allows a slightly more accurate
energy prediction compared to models that ignore the other
components.

Table II shows the consumption of different device states.
The values for the Tx state were measured when the transmit
power of the radio was set to 0 dBm.

The CC2538 has an identical consumption when the radio
is in Sleep or Idle state because the CC2538 consists of both
the CPU and radio and the radio itself does not have a separate
Sleep state. Instead it has a single “Off” state of which we use
the consumption for both the Sleep and Idle states.

The CPU usage while sleeping is very high. This is caused
because the OpenMote-CC2538 code in OpenWSN currently
uses the lowest possible sleep mode. When using the CC2538
radio, the consumption dropped to 1.6420 mA when entering
deep sleep (SYS CTRL PM 2 specifically). This is still high
because the OpenUSB is still consuming power. Since the
OpenWSN version that uses the CC2538 does not access the
CC1200 at all, the CC1200 chip is still in Idle mode which
is where this extra consumption is coming from. When the
OpenMote-CC2538 is not connected to the OpenUSB (which
contained this CC1200 chip), the measured consumption dur-
ing deep sleep drops to only 0.0317 mA. With future updates
to OpenWSN it is thus expected that the consumption of the
CPU in Sleep state will be more comparable to that of different
hardware.

If the CPU is put in deep sleep when the CC1200 radio is
used, the consumption drops to 0.7611 mA. The consumption
could still be lower if the radio went into a deeper sleep mode
as well (SLEEP instead of XOFF).

TABLE III. MEASURED AND CALCULATED CONSUMPTION FOR EACH
SLOT TYPE, IN µC

Slot type Measured Calculated
CC2538 CC1200 CC2538 CC1200

TxDataRxAck 283.34 446.72 284.60 445.17
RxDataTxAck 287.41 458.68 286.22 457.78
TxData 262.07 386.76 262.78 388.01
RxData 265.39 399.98 263.09 397.01
RxIdle 229.61 260.97 229.33 261.15
Sleep 184.19 183.63 182.90 186.36
TxDataRxAckMissing 280.06 417.35 279.89 418.85

C. Slot consumption

With the duration and consumption of each state we could
calculate the consumption for each type of slot. We also
measured the consumption of entire slots to experimentally
verify the correctness of our calculated values in our model.
Table III shows the values we measured and calculated for each
of the slot types for both radios. We configured both radios to
have a transmit power of 0 dBm and sent packets of 127 bytes
(the maximum packet size when including the CRC bytes).

As seen in Table III, the difference between the measured
and calculated values is relatively small. The main contributors
to these differences are small measurement errors and the
variations in guard time duration. In the measured data, the
guard time is a little smaller or larger than in the calculated
data, which assumes perfectly synchronized clocks. On average
the difference is only 1.3 µC or 0.457%, which shows that our
model provides a good representation for real-life scenarios.

Fig. 5 shows the current during a TxDataRxAck time slot
according to both the model and the measurements. The peaks
on the graphs do not perfectly match, because the model
simplified certain states. The radio state may be changed while
the CPU is active, causing the CPU and radio to be active at
the same time, while the model might only consider the radio
as active once the CPU goes to sleep. This results in a peak in
the measured time slot where there is no peak in the model.

D. Slot frame consumption

We also compared the consumption calculated by our
model with measurements for entire slot frames.

We set up a network of three motes with a fixed topology,
as shown in Fig. 6. The leaf mote was configured to send one
packet of 127 bytes (including CRC) every 2 seconds. Slot
frames consisted of 51 time slots of which one was configured
for data from the leaf to the relay mote and one for data from
the relay to the root mote. The first time slot in the slot frame is
reserved for advertisements and used to send Enhanced Beacon
frames. We did not look at the broadcasted beacons and DAO
packets that were send every 30 and 60 seconds, we only
focussed on the packets coming from the leaf mote. The first
time slot in each slot frame is thus considered to be of type
RxIdle.

Since beacons and similar packets were ignored, the con-
sumption values may not offer a good prediction for how
long the battery of the mote will last. The goal of the
comparison of slot frame consumption was however to verify
how accurate the model is by calculating and measuring similar
circumstances. It is thus not important that the scenario withxv

Fig. 5. Comparison between calculated and measured TxDataRxAck time
slot when using the CC2538 radio

Fig. 6. Topology used while comparing the consumption of a slot frame

only 3 motes is less likely and that the activity in a slot frame
is simplified.

The slot frame of the leaf mote always consists of 1 RxIdle
slot and at least 49 Sleep slots. The final slot will be either
TxDataRxAck when there is data to send or another Sleep
slot. Since there are 51 slots in a slot frame and every time
slot lasts 15 ms, the duration of each slot frame is 765 ms.
Since a packet is send every 2 seconds, the consumption of
the leaf slot frame can be considered as follows:

Qleaf = QRxIdle + 49 ∗QSleep

+ (0.3825 ∗QTxDataRxAck + 0.6175 ∗QSleep)

The slot frame of the relay mote can be determined in a
similar way. There are RxIdle and Sleep slots when no packet
is received, while there are RxDataTxAck and TxDataRxAck
slots when a packet was received and forwarded. The first
time slot is also of type RxIdle and the remaining 48 slots are
always Sleep slots. The formula for the consumption of the

TABLE IV. MEASURED AND CALCULATED SLOT FRAME
CONSUMPTION, IN µC

Measured Calculated
Mote type CC2538 CC1200 CC2538 CC1200
Leaf 9499.80 9580.50 9413.23 9678.14
Relay 9543.75 9742.71 9481.42 9828.15

slot frame of the relay mote thus becomes:

Qrelay = QRxIdle + 48 ∗QSleep

+ (0.3825 ∗ (QRxDataTxAck +QTxDataRxAck)

+ 0.6175 ∗ (QRxIdle +QSleep))

We will not focus on the consumption of the root mote. It
is connected to the computer and serves as a gateway to the
internet, therefore the mote typically does not run on batteries.
Serial communication cannot be disabled on this mote and the
measured consumption would therefore not fully correspond
to our model.

We measured the consumption of the slot frames for the
leaf and relay mote and compared them with the values
calculated through the model using the above formulas. The
result can be found in Table IV. On average the error between
the calculated and measured values are below 1% as expected.
An error of around 66.3 µC is normal based on our average
error of 1.3 µC that would occur in each of the 51 time slots.
The error seems to be slightly higher here however, mainly
because the majority of time slots were Sleep slots where the
error per time slot was above average.

The comparison again shows that our model is quite good.
For example, the difference between the measured and calcu-
lated consumptions for the Leaf mote for the CC2538 radio is
only 0.91%. However, we have to be careful with using these
numbers to show how accurate the model is exactly. Since
the difference is small, the measurement errors will become
relatively large. A measurement error of only 0.1% on both
the measured slot frame consumption and the consumptions
on which the calculated values are based could already cause
the difference to be 0.71% instead of 0.91%.

V. CONCLUSION

We have proposed a new energy model for time slots in
OpenWSN that takes all network-related CPU state changes
into account. We have experimentally verified that when
inputting the durations and consumptions of the OpenMote
hardware, the calculated energy consumption by the model is
very close to the (measured) consumption of this hardware. In
our setup the error between the calculated and measured energy
consumption was less than 1%. This makes our model suitable
for use in simulations. The ability to calculate the consumption
based on the packet size also improves upon existing models
that only provide the consumption of an entire time slot with
a packet of maximum size.

We also contributed a driver for the CC1200 radio chip on
the OpenUSB hardware to the OpenWSN firmware project,
which allows experimenting on the sub-1GHz band.

Our model provides accurate energy consumption predic-
tions and is therefore suitable for 6TiSCH simulations with
OpenWSN.xvi

A. Future work

Once the OpenMote-CC2538 platform code is updated to
allow deep sleep, the accuracy of our model can be examined
over a longer duration, as a minor error on the Sleep slot would
no longer lead to a large total error. The consumption of the
CC1200 chip could also be reduced in the future by going into
SLEEP mode instead of XOFF mode.

Ultimately, the goal of the model is to be used in a
simulation. It should thus be integrated into the OpenSim
part of the OpenVisualizer to be of real use. Another place
where the model can be used is in the 6TiSCH simulator
[22]. If the sleep consumption issues are fixed then the energy
model used in the simulator could be replaced by the model
described in this paper. The energy consumption found by the
simulation will then take the packet size into account and be
more accurate.

REFERENCES

[1] D. Christin, A. Reinhardt, P. S. Mogre, R. Steinmetz et al., “Wireless
sensor networks and the internet of things: selected challenges,” Pro-
ceedings of the 8th GI/ITG KuVS Fachgespräch Drahtlose sensornetze,
pp. 31–34, 2009.

[2] J. M. Kahn, R. H. Katz, and K. S. J. Pister, “Emerging challenges:
Mobile networking for ”smart dust”,” Journal of Communications and
Networks, vol. 2, no. 3, pp. 188–196, Sept 2000.

[3] P. Huang, L. Xiao, S. Soltani, M. W. Mutka, and N. Xi, “The
evolution of mac protocols in wireless sensor networks: A survey,” IEEE
Communications Surveys Tutorials, vol. 15, no. 1, pp. 101–120, First
2013.

[4] “Ieee standard for local and metropolitan area networks–part 15.4: Low-
rate wireless personal area networks (lr-wpans),” IEEE Std 802.15.4-
2011 (Revision of IEEE Std 802.15.4-2006), pp. 1–314, Sept 2011.

[5] “Ieee standard for local and metropolitan area networks–part 15.4: Low-
rate wireless personal area networks (lr-wpans) amendment 1: Mac
sublayer,” IEEE Std 802.15.4e-2012 (Amendment to IEEE Std 802.15.4-
2011), pp. 1–225, April 2012.

[6] L. Doherty, W. Lindsay, and J. Simon, “Channel-specific wireless sensor
network path data,” in 2007 16th International Conference on Computer
Communications and Networks, Aug 2007, pp. 89–94.

[7] T. Watteyne, A. Mehta, and K. Pister, “Reliability through frequency
diversity: why channel hopping makes sense,” in Proceedings of the 6th
ACM symposium on Performance evaluation of wireless ad hoc, sensor,
and ubiquitous networks. ACM, 2009, pp. 116–123.

[8] T. Watteyne, M. Palattella, and L. Grieco, “Using ieee 802.15.4e time-
slotted channel hopping (tsch) in the internet of things (iot): Problem
statement,” Tech. Rep., 2015.

[9] S. Petersen and S. Carlsen, “Wirelesshart versus isa100.11a: The format
war hits the factory floor,” IEEE Industrial Electronics Magazine, vol. 5,
no. 4, pp. 23–34, Dec 2011.

[10] X. Vilajosana, P. Tuset, T. Watteyne, and K. Pister, “Openmote: open-
source prototyping platform for the industrial iot,” in International
Conference on Ad Hoc Networks. Springer, 2015, pp. 211–222.

[11] D. Dujovne, T. Watteyne, X. Vilajosana, and P. Thubert, “6tisch:
deterministic ip-enabled industrial internet (of things),” IEEE Commu-
nications Magazine, vol. 52, no. 12, pp. 36–41, December 2014.

[12] J. Hui and P. Thubert, “Compression Format for IPv6 Datagrams over
IEEE 802.15.4-Based Networks,” RFC 6282, Tech. Rep. 6282, Sep.
2011. [Online]. Available: https://rfc-editor.org/rfc/rfc6282.txt

[13] A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister, R. Struik, J. Vasseur,
and R. Alexander, “RPL: IPv6 Routing Protocol for Low-Power and
Lossy Networks,” RFC 6550, Tech. Rep. 6550, Mar. 2012. [Online].
Available: https://rfc-editor.org/rfc/rfc6550.txt

[14] Z. Shelby, K. Hartke, and C. Bormann, “The Constrained Application
Protocol (CoAP),” RFC 7252, Tech. Rep. 7252, Jun. 2014. [Online].
Available: https://rfc-editor.org/rfc/rfc7252.txt

[15] Q. Wang, X. Vilajosana, and T. Watteyne, “6tsch operation sublayer
(6top),” 2013.

[16] T. Watteyne, X. Vilajosana, B. Kerkez, F. Chraim, K. Weekly, Q. Wang,
S. Glaser, and K. Pister, “Openwsn: a standards-based low-power wire-
less development environment,” Transactions on Emerging Telecommu-
nications Technologies, vol. 23, no. 5, pp. 480–493, 2012.

[17] Wireshark Foundation, “Wireshark,” https://www.wireshark.org.
[18] D. D. Guglielmo, B. A. Nahas, S. Duquennoy, T. Voigt, and G. Anastasi,

“Analysis and experimental evaluation of ieee 802.15.4e tsch csma-ca
algorithm,” IEEE Transactions on Vehicular Technology, vol. 66, no. 2,
pp. 1573–1588, Feb 2017.

[19] G. Z. Papadopoulos, A. Mavromatis, X. Fafoutis, N. Montavont,
R. Piechocki, T. Tryfonas, and G. Oikonomou, “Guard time optimisation
and adaptation for energy efficient multi-hop tsch networks,” in 2016
IEEE 3rd World Forum on Internet of Things (WF-IoT), Dec 2016, pp.
301–306.

[20] I. Juc, O. Alphand, R. Guizzetti, M. Favre, and A. Duda, “Energy
consumption and performance of ieee 802.15.4e tsch and dsme,” in 2016
IEEE Wireless Communications and Networking Conference, April
2016, pp. 1–7.

[21] X. Vilajosana, Q. Wang, F. Chraim, T. Watteyne, T. Chang, and K. S. J.
Pister, “A realistic energy consumption model for tsch networks,” IEEE
Sensors Journal, vol. 14, no. 2, pp. 482–489, Feb 2014.

[22] T. Watteyne, K. Muraoka, N. Accettura, and X. Vilajosana, “The 6tisch
simulator,” https://bitbucket.org/6tisch/simulator, 2017.

xvii

Chapter 1

Introduction

As the popularity of the Internet of Things (IoT) grows, Wireless Sensor Net-
works (WSN) are becoming more popular and this leads to many challenges
[1].

One major challenge is minimizing the energy consumption of the devices
in the network (which are referred to as “motes”). Whether the military is
monitoring an area to detect enemy intrusion or whether the concentration
of dangerous gases in measured in industrial plants, the goal is to have motes
that can run for many years on a small battery. It is easy to see that reducing
the power consumption has a lot of benefits. The battery will last longer
so it takes longer before the motes or their batteries have to be replaced.
Alternatively the lifetime could be kept the same but the mote could be
made even smaller as less space is required for the battery. There are also
cases where it is hard or infeasible to replace the motes once their battery
has run out, e.g., if “smart dust” [2] is deployed over an entire region.

One thing we can do to reduce the consumption is having a more energy-
efficient Medium Access Control (MAC) protocol. If the mote has to be
listening on its radio the whole time then it will consume a lot more power
than when it only wakes up at the time another mote is transmitting. We

1

CHAPTER 1. INTRODUCTION 2

therefore need a MAC protocol that reduces the time where the radio is
active and increases the amount of time during which the mote can sleep.
Many such protocols were developed over time [3], one of them being the
MAC layer from IEEE 802.15.4 [4].

The IEEE 802.15.4e MAC amendment to the existing IEEE 802.15.4 stan-
dard enhances and adds functionalities to the MAC layer [5]. One of the
newly added modes that was designed for low-power devices is Time-Slotted
Channel Hopping (TSCH). This mode is mostly suited for multi-hop mesh
networks. The time-slotted access makes the latency bounded and pre-
dictable and provides motes with a guaranteed bandwidth. By using multiple
channels the capacity of the network can be increased and the channel hop-
ping improves the reliability. TSCH networks can achieve 99.999% reliability
[6] while providing a deterministic performance and energy consumption.

1.1 Time-Slotted Channel Hopping

In TSCH networks, time is divided into time slots. Each slot provides enough
time to transmit a MAC frame of the maximum size followed by an optional
acknowledgement (ACK) frame indicating that the MAC frame was suc-
cessfully received. During every time slot multiple channels can be used
simultaneously, leading to a 2-dimensional grid of cells called a slot frame.

Figure 1.1 shows an example of a slot frame with 5 channels and 4 time
slots, for a network with a topology displayed in Figure 1.2. Each cell in
the grid represents a specific time slot and channel offset in which a directed
communication between motes can be assigned. These assigned cells can
either be dedicated to a single transmitter, or they can be shared between
multiple motes (like G→ F and H → F in the example). A shared cell can
be useful for sporadic or unpredictable traffic.

The slot frames are continuously repeated over time as displayed in Figure
1.3. The cells in the slot frame can however still be updated dynamically, so
not every slot frame has to be identical. The schedule of the slot frames is
synchronized across all motes, so they know in which slot to transmit, receive

CHAPTER 1. INTRODUCTION 3

Figure 1.1: Slot frame schedule example

Figure 1.2: Topology of example network

Figure 1.3: Slot frames are repeated

CHAPTER 1. INTRODUCTION 4

or sleep.

TSCH also uses channel hopping to combat multi-path fading and external
interference [7]. This channel hopping depends on the Absolute Slot Number
(ASN) and the amount of channels. If the slot frame size (amount of slots
in a single slot frame) is not a prime number, it may therefore be possible
that not every frequency is used. The exact frequency to communicate on is
determined by the following function where F is a lookup table containing
the set of available channels:

frequency = F ((ASN + channelOffset) mod nrOfChannels)

In this thesis we only focused on TSCH in IEEE 802.15.4e [8], but the research
is also applicable to other protocols using TSCH such as WirelessHART and
ISA100.11a [9].

1.2 The importance of energy models

To develop MAC protocols we somehow need to measure how well the pro-
tocol performs. We need a way to predict the lifetime of the mote or be
able to compare different MAC protocols with each other. It is infeasible to
perform large scale tests with thousands of motes or to perform tests that
last several years. Instead we need an energy model that we can use to sim-
ulate a network of any size. Having a realistic energy model is crucial to
optimize the energy consumption of MAC protocols. Such models can also
help with improving the topology by showing which nodes are overloaded
and will run out of battery power before the others. The more accurate the
model, the more useful the results of the simulation will be to predict real
world consequences.

1.3 Contributions

We created an elaborate energy consumption model for accurately

predicting the energy consumption of motes running OpenWSN

CHAPTER 1. INTRODUCTION 5

firmware and forming a 6TiSCH network. Although based on existing
research, we built the model from the ground up. Using the most recent
firmware version and new hardware, our model is more up-to-date than the
existing ones. The model takes more different states and types of time slots
into account, allowing to more accurately predict the energy consumption.

This model can be combined with the existing OpenSim simulator in Open-
WSN. This allows simulations to be run that predict or analyze the energy
consumption. Although the python code of the model is written, this
integration is left for further research.

We also contributed a driver for the CC1200 radio chip on the

OpenUSB hardware to the OpenWSN firmware project. This was
necessary for us to use the hardware, but will also allow others to make use
of the hardware for other research. Unlike the other supported radio chips
which operate on the 2.4 GHz band, the CC1200 operates on the sub-1GHz
band.

1.4 Thesis organization

We start by providing an overview of what we used in this research and point
to similar research in Chapter 2. The setup and preparations for our experi-
ments are described in Chapter 3. We elaborate on our model in Chapter 4
and compare it with experimental measurements in Chapter 5 to show how
accurate the model is. Our conclusions and future work can be found in
Chapter 6.

The appendices provide extra information and data that was left out of the
thesis. The thesis does not go over all time slot types in detail, but for all
types we provide a list of all states and their duration in Appendix A and
Appendix B. All figures comparing our time slot model with our experimental
measurements are provided in Appendix C.

Chapter 2

Background and related work

In this chapter we provide an overview of the hardware, software and proto-
cols that we have used.

We start by describing the hardware used in our measurements, then we
introduce OpenWSN and the protocols it is based on and finally we talk
about the existing models and the difference with our model.

2.1 OpenMote hardware

We worked with the OpenMote, a modular open-hardware ecosystem de-
signed for the Industrial IoT [10]. The platform was developed at UC Berke-
ley and was designed to efficiently implement IoT standards such as the
upcoming IETF 6TiSCH.

The OpenMote hardware ecosystem consists of four parts, the OpenMote-
CC2538, OpenBattery, OpenBase and OpenUSB, shown in Figure 2.2.

2.1.1 OpenMote-CC2538

The OpenMote-CC2538 is the core of the OpenMote hardware ecosystem.
It is the most important component, the other components (e.g., the Open-
Battery) can be considered as extensions to it. It features a TI CC2538 SoC

6

CHAPTER 2. BACKGROUND AND RELATED WORK 7

Figure 2.1: OpenMote hardware ecosystem. From left to right: OpenMote-

CC2538, OpenBattery, OpenBase, OpenUSB

that consists out of a 32 MHz microcontroller with 32 kB of RAM available
and an IEEE 802.15.4-compliant 2.4 GHz radio.

The form factor and pin-out were chosen to be the same as other popular
low-power wireless board, such as the XBee and WaspMote, meaning that
the OpenMote-CC2538 can be used with accessories built for those boards.

2.1.2 OpenBattery

The OpenBattery extension allows the OpenMote-CC2538 to be powered
by two AAA batteries instead of having it powered by a USB. The battery
pack also includes sensors that the OpenMote-CC2538 can access: a temper-
ature/humidity sensor (SHT21), a 3-axis accelerometer (ADXL346) and a
light sensor (MAX44009). The board also contains an on/off switch so that
you can turn the device off when you are not using it.

2.1.3 OpenBase

While the OpenMote-CC2538 can be placed on an OpenBattery to run, it has
to be connected to a computer in order to flash it. The OpenBase offers this
functionality and also provides a way to debug the program. The OpenBase is
connected to the computer with a Mini USB through which you can flash the
OpenMote-CC2538 that is placed on the OpenBase. It also serves as serial
input and output for the flashed program. The OpenBase also includes a

CHAPTER 2. BACKGROUND AND RELATED WORK 8

Figure 2.2: OpenUSB Rev.D

JTAG interface, allowing debugging the program by placing breakpoints and
inspecting variables. Finally, there is also an Ethernet interface that allows
the program to be connected to the internet without needing a computer.

2.1.4 OpenUSB

The OpenUSB is still in development. Originally it provided the same func-
tionality as the OpenBattery, but also with a male USB connector and a
JTAG interface. When an OpenMote-CC2538 is connected to an OpenUSB,
it acts in the same way as the less powerful TelosB mote.

The OpenUSB version that we worked with also has a CC1200 radio chip.
Unlike the CC2538 which contains a 2.4 GHz radio, the CC1200 is a radio
transceiver that operates on the sub-1GHz band. This allows long-range com-
munication between the motes. The maximum distance for communication
with the CC1200 heavily depends on the configuration of radio parameters
and is estimated to go from 292 meter up to 14978 meter in line-of-sight in
the 868 MHz band [11].

The OpenUSB Rev.D used in this thesis (see Figure 2.2) was a prelimi-
nary board and is thus not identical to the OpenUSB that is being sold and
shipped, but they are equivalent.

CHAPTER 2. BACKGROUND AND RELATED WORK 9

Figure 2.3: 6TiSCH stack

2.1.5 OpenMote+

A newer board is currently being developed in the OpenMote ecosystem.
Similar to the combination of the OpenMote-CC2538 and OpenUSB, the
OpenMote+ will offer a dual-radio interface for short- and long-range com-
munication on the 2.4 GHz and sub-1GHz bands [12].

2.2 6TiSCH

6TiSCH is a protocol stack that tries to standardize IPv6 on top of the TSCH
mode of IEEE 802.15.4e [13]. Above the IEEE 802.15.4e TSCH layer sits the
6TiSCH Operation Sublayer (6top) that allows a scheduling entity to manage
the TSCH schedule of the network. This layer is necessary to let other IETF
standards such as 6LoWPAN [14], RPL [15] and CoAP [16] work together
with IEEE 802.15.4e TSCH. The protocol stack is shown in Figure 2.3.

6top enables distributed scheduling in 6TiSCH networks [17]. Motes can

CHAPTER 2. BACKGROUND AND RELATED WORK 10

negotiate to add or delete TSCH cells in the slot frame of their neighbor.
For example, a mote can request additional cells to its parent mote when
its traffic demand increases. Cells that are reserved like this are called “soft
cells”. 6top also supports centralized schedulers that can allocate “hard cells”
which cannot be dynamically reallocated by 6top itself.

2.2.1 TSCH Slot Template

6top allows changing slot types to indicate that the mote should transmit,
listen or put its radio to sleep. For IEEE 802.15.4e we identified 7 different
types of time slots:

• TxDataRxAck: The mote sends a frame during this time slot and re-
ceives an ACK when the data has been received successfully.

• TxData: The mote sends a frame during this time slot but does not
expect an ACK (e.g., broadcast or multicast frames such as DIO mes-
sages).

• RxDataTxAck: The mote listens and receives a frame in this time slot
and replies with an ACK to indicate that it successfully received the
frame.

• RxData: The mote listens and receives a frame in this time slot but no
ACK is send (e.g., broadcast or multicast frames).

• RxIdle: The mote listens but does not receive a frame in this time slot.

• Sleep: The mote does not transmit or receive during this time slot.

• TxDataRxAckMissing: The mote sends a frame and expects and ACK,
but no ACK is received. This could be caused by a collision of the data
frame.

2.2.2 OpenWSN

OpenWSN is an open-source project that implements the 6TiSCH standard
[18]. This means that it provides a complete protocol stack based on IoT

CHAPTER 2. BACKGROUND AND RELATED WORK 11

Figure 2.4: OpenVisualizer web view

standards such as 6LoWPAN, RPL and CoAP. The hierarchical design of
the project makes it relatively easy to port the project to new hardware
platforms. Hardware drivers for the most common motes are already avail-
able inside the OpenWSN project itself.

Next to the firmware, they also provide useful software, such as the OpenVi-
sualizer shown in Figure 2.4. Although the main use of the OpenVisualizer
project is to connect the OpenWSN network to the internet, it also provides
the ability to monitor the network. The tool shows the internal state (neigh-
bor table, scheduling table, packet queue, etc.) of all the motes that are
physically connected to the computer running the OpenVisualizer. It also
has the ability to run simulated motes and to debug the communication with
Wireshark [19].

2.3 Energy models

As modelling the energy consumption is an important subject, many papers
have already been written about it. Several of which have also dealt with
the consumption of TSCH networks.

Some works focused on specific features in TSCH. De Guglielmo et al. ana-

CHAPTER 2. BACKGROUND AND RELATED WORK 12

lyzed the IEEE 802.15.4e TSCH CSMA-CA algorithm that is used in shared
time slots [20]. Papadopoulos et al. investigated the impact of the guard
time in TSCH [21]. They made the guard time smaller when motes are
closer to their sink and concluded that it resulted in significant savings in
energy consumption without compromising the reliability of the network.

Other works such as Juc et al. compared the TSCH and DSME modes of
802.15.4e [22]. They found that the energy consumption of TSCH tends to lie
higher compared to DSME mode. This is due to the large fixed guard time
in TSCH and because DSME can aggregate multiple ACKs and transmit a
single group ACK.

Finally, X. Vilajosana et al. presented an energy model for TSCH networks,
making use of OpenWSN for their experimental validation [23]. The val-
ues from the model were compared against measurements on GINA and
OpenMote-STM32 platforms.

Our research followed the same lines as the last mentioned paper, but with
several differences and improvements. OpenWSN is continuously updated
and the current firmware is different than the version from 2013. By using
the OpenMote-CC2538 and a preliminary OpenUSB Rev.D board, we also
used state-of-the-art hardware. Instead of looking at two different platforms,
we focused on a single platform and studied the differences between using a
2.4 GHz and a sub-1GHz radio. We also explicitly looked at the difference
in power consumption between using a System on Chip (SoC) and the case
with a separate microcontroller and radio chip. All the steps to reach the
model are explained in detail, making this research reproducible. This way,
the model can still be used for different types of hardware by simply changing
some of the measured values.

Chapter 3

Methodology

In this chapter we explain the changes made to the OpenWSN firmware and
the setup used to perform the measurements.

Two kind of measurements have to be performed to find the energy consump-
tion during a time slot:

• For each device state (combination of cpu and radio state) we need to
measure the energy consumption of the mote (Section 3.2).

• We also need to measure the duration of each of these device states in
the time slot (Section 3.3).

3.1 Firmware changes

Setting an output pin high or low changes the power consumption so we
decided to disable the code that toggled debug pins and leds while doing the
energy measurements. We also disabled the serial communication because
even when the OpenUSB is not connected to a computer, the code would
still try to output data which caused an increase in power consumption.

Other than these small adaptions we did not need to change anything to use
the 2.4 GHz radio. The sub-1GHz radio on the other hand required a lot

13

CHAPTER 3. METHODOLOGY 14

more work as there were no working drivers yet for the CC1200 radio chip
on the OpenUSB.

3.1.1 CC1200 driver development

Two drivers for the CC1200 already existed:

• The first implementation [24] was created for the CC1200 Develop-
ment Kit (CC1200DK) hardware, it however provided little code that
could be reused. Other than the command strobes that are sent to the
CC1200 chip to change the radio state, the code is platform specific and
irrelevant for the OpenUSB hardware. Although all functions were im-
plemented and this code was merged into the OpenWSN development
branch, the code could not be compiled yet.

• The second implementation [25] was written for the OpenUSB plat-
form, but it was never finished. We decided to use this driver imple-
mentation as a starting point because a large part of the needed code
was already there. The existing code however contained several bugs
which we also had to fix. These issues ranged from small typos and
stub functions1 that caused the code to hang, to parts that we rewrote
entirely.

Handling interrupts

One part we had to implement was handling the radio interrupts. There are
two interrupts from the radio that we need to handle, one at the start and one
at the end of a frame that is being received or transmitted. We configured
the radio such that one of the GPIO pins would become high at the start of a
frame and would become low again at the end of a frame. The exact moments
of these interrupts is shown in Figure 3.1. The packet in the IEEE 802.15.4
frame structure will first transmit a 32 bits preamble sequence followed by 8

1A stub function is a method that exists but is not yet implemented. It can be an empty
function, return a fixed value or perform any other temporary operation that substitutes
the yet-to-be-developed code.

CHAPTER 3. METHODOLOGY 15

Figure 3.1: Interrupt timing in IEEE 802.15.4 frame

bits Start of Frame Delimiter (SFD). Once the SFD is transmitted, the start
of frame interrupt is triggered. The 8 bits physical header (containing the
size of the frame) and the frame itself are then transmitted. Once all bytes
have left the radio, the end of frame interrupt is triggered.

Getting the timing right

Timing is very important because one mote has to receive at the exact mo-
ment the other mote is transmitting. Even with a large guard time, if the
transmitter starts too late or too early, the receiver may still get the packet
but incorrectly believe that it is out of sync. Some timing related constants
thus have to be updated when using a different radio.

One constant that has to be updated is the time it takes to go from IDLE
to TX mode, as this can be different in each radio. We need this duration so
that the “go” signal can be given at the right time in order to transmit the
first byte exactly when expected by the receiver.

Other constants that needed to be reviewed are the maximum time to copy
from and to the radio. While using the CC2538 just requires the bytes to be
written to a register in memory, the bytes have to be send over SPI when
using the CC1200, which is significantly slower.

A decision also had to be made about the data rate. Using the 50 kbps found
in both the existing code and the code for the CC1200DK platform would
mean that the slot length cannot remain 15 ms. Transmitting a packet of
127 bytes would already take longer than the entire slot length. Many more
timing constants would thus have to be adapted. We opted for the alternative
and boosted the CC1200 data rate to 250 kbps by changing the radio register
settings. This is the same data rate used by the CC2538 radio and it thus

CHAPTER 3. METHODOLOGY 16

Property Value

Modulation format 2-FSK

Symbol rate 250 ksps

Deviation 124.816895 kHz

RX filter BW 833.333333 kHz

Table 3.1: CC1200 radio configuration used to achieve a bit rate of 250 kbps

State Consumption Condition

IDLE 1.5 mA Clock running, system waiting with no radio activity

XOFF 180 µA Crystal oscillator disabled

SLEEP 0.12 / 0.5 µA Low-power RC oscillator off / running

Table 3.2: CC1200 power modes when not receiving or transmitting

takes the same amount of time to transmit the frame. The settings changed
on the radio are shown in Table 3.1.

Trying to sleep

There are three different modes for when the CC1200 is inactive: IDLE,
XOFF and SLEEP (listed in decreasing order of energy consumption). The
CC1200 automatically goes to IDLE state when not transmitting or receiving.
Going to the XOFF state turns off the crystal oscillator. The SLEEP state is
the lowest power mode possible but will not retain all register values. Table
3.2 shows the theoretical energy consumption of these states [26].

We encountered several issues when attempting to put the CC1200 in SLEEP
mode to save power.

When a packet is received, the OpenWSN firmware first turned off the radio
before trying to read the packet from the radio. Since the CC1200 flushes
the RX FIFO buffer when going to SLEEP mode, reading the packet failed.
With the CC2538 radio this is not a problem because it only has a single OFF
mode which does not flush the RX buffer. However, for using the CC1200
radio it is necessary to turn the radio off after reading the packet instead of
before.

CHAPTER 3. METHODOLOGY 17

The code to save energy taken from the CC1200DK platform did not work
properly. The authors attempted to first put the radio into XOFF mode
to disable the crystal oscillator and afterwards put the radio into SLEEP
mode. Due to the way the command strobes are passed to the radio, the
device however ended up in IDLE mode instead. The radio should be put in
SLEEP mode directly, which also disables its crystal oscillator.

Putting the radio into SLEEP mode increased the energy consumption by
almost 10 mA in our measurements. We therefore decided to use the XOFF
mode instead to save power.

3.2 Measuring energy consumption

We used two setups to measure the energy consumption. The first method
was only used for the CC2538 radio and for a limited amount of device states
(we had minimized the amount of device states by assuming the cpu would
always be sleeping while the radio is active). Once we found that the first
setup could not fully measure the energy consumption of the CC1200 radio,
we decided to perform all measurements in a different way.

3.2.1 Gecko setup

We started by doing measurements using the EFM32GG-STK3700 Giant
Gecko Starter Kit from Silicon Labs. The Gecko contains an Advanced En-
ergy Monitor (AEM) which allows tracking its current consumption. It is
capable of measuring current in the range of 0.1 µA to 50 mA with an ac-
curacy of 0.1 mA for currents above 250 µA and an accuracy of 1 µA for
currents below 250 µA.

The Gecko was connected to the OpenUSB by connecting the VMCU/VCC
and GND pins as displayed in Figure 3.2. With this setup, the OpenUSB is
powered through the Gecko instead of via a USB. The Gecko is connected by
USB to a computer where the Energy Profiler in Simplicity Studio displays
the energy consumption.

CHAPTER 3. METHODOLOGY 18

Figure 3.2: Giant Gecko connected to the OpenUSB

Since the AEM measures the entire energy consumption including the con-
sumption of the Gecko, we needed to flash a program on the Gecko that
consumed minimal power. The flashed program put the Gecko into EM42,
the lowest possible energy mode, which has a theoretical consumption of only
20 nA. Since the AEM measures in steps of 0.1 µA, the consumption of the
Gecko no longer affected the measured consumption.

A downside of using the Gecko to measure the energy consumption is that
the AEM is limited to 6250 current samples per second. This means that
there can only be one sample every 160 µs or 93.75 samples per 15 ms time
slot. This is enough to estimate the energy consumption but peaks in the
consumption may not be fully visible.

Once we started performing measurements while using the CC1200 radio,
we found that it could not be measured with the Gecko as the consumption
exceeded 50 mA. We needed a different setup to continue.

2The program actually waited 3 seconds before going into EM4. Putting the Gecko
in EM4 at the very beginning of the program can lock up the device and prevent it from
being flashed again using the normal method.

CHAPTER 3. METHODOLOGY 19

Figure 3.3: N6705B DC Power Analyzer

3.2.2 Actual setup

To perform the measurements we used a N6705B DC Power Analyzer, shown
in Figure 3.3. The OpenUSB was connected on its VCC and GND pins to
one of the power supply outputs of the N6705B, which was configured to
provide an input voltage of 3.3 V.

Although this device is more accurate than the Giant Gecko, the main reason
to use it was because the consumption of the CC1200 radio would fall within
the measurable range. Although a better accuracy of the measurement tool
increases the accuracy at which predictions about the battery lifetime can be
made, we believe that for this thesis the exact numbers are less relevant. The
measured numbers were used to experimentally verify how good the model
is, but will have no use when the model is going to be used for different
hardware. We therefore did not set up the 4-wire sensing on the N6705B
which can provide ammeter accuracy up to 0.025% [27], but instead used the
2-wire mode without trying to achieve an excellent accuracy.

Where possible we used the average consumption over a period of around
400 ms. Some states like RX and TX however only last for as long as the
radio takes to send all the bytes. Since packets of 127 bytes (the maximum
packet size) were being used, the average was taken over only 3-4 ms for these
states.

CHAPTER 3. METHODOLOGY 20

Using this setup, we redid the measurements with the CC2538 and also per-
formed extra measurements. We no longer assumed a relationship between
the CPU and radio states.

3.2.3 Code

The code below was used to put the mote in the right device state so that
we could measure the energy consumption of each state. Because the code is
slightly different for each state, not all lines of code have to be in the program
at the same time. Code that is not always present is placed in comments and
was uncommented in the situations where they were needed.

#include " rad io . h"
#include "bsp_timer . h"
#include <source / sy s_ct r l . h>
#ifndef USING_CC1200

#inc lude " cc2538 r f . h"
#endif

void endFrame () {
rad io_r fOf f () ;

}

int mote_main () {
board_init () ;
radio_setEndFrameCb (endFrame) ;

uint8_t packet [1 2 7] ;
radio_loadPacket (packet , 127) ;

// Set the TX power o f the rad io
#ifde f USING_CC1200

// 0 dBm:
// cc1200_set_tx_power (0) ;
// 14 dBm:

CHAPTER 3. METHODOLOGY 21

// cc1200_set_tx_power (14) ;
#else

// 0 dBm:
// HWREG(RFCORE_XREG_TXPOWER) = 0xBC;
// 3 dBm:
// HWREG(RFCORE_XREG_TXPOWER) = 0xD5 ;

#endif

// Set the s t a t e o f the rad io
// Li s t en /Rx :
// radio_rxEnable () ;
// radio_rxNow () ;
// Tx :
// radio_txEnable () ;
// radio_txNow () ;

#ifde f USING_CC1200
// I d l e :
// cc1200_idle () ;
// S leep :
// rad io_rfOf f () ;

#else

// Off :
// rad io_rfOf f () ;

#endif

while (true)
{

// Set the s t a t e o f the CPU
// Act ive :
// /∗ empty wh i l e loop ∗/
// S leep :
// SysCtrlPowerModeSet (SYS_CTRL_PM_NOACTION) ;
// SysCt r l S l e ep () ;
// DeepSleep :

CHAPTER 3. METHODOLOGY 22

Figure 3.4: Giant Gecko connected to the OpenUSB to measure durations

// SysCtrlPowerModeSet (SYS_CTRL_PM_2) ;
// SysCtr lDeepSleep () ;

}
}

3.3 Measuring state durations

For the timing measurements we again used the Giant Gecko. There exists
an example for the Gecko that shows on the display how many seconds the
PB0 button has been pressed. This has been our starting point.

Since the PB0 button is mapped to pin PB9, one of the OpenUSB pins has
been connected to pin PB9 on the Gecko. The program could then measure
how long this pin was made low. On the OpenUSB pin PD2 was used because
this debug pin is not in use by the CC1200 chip. The connection between
the OpenUSB and Gecko is shown in Figure 3.4.

Instead of printing the time on the display, the durations were sent through
the Serial Wire Output (SWO) interface. The output was then printed in the
console in Simplicity Studio on the connected computer. This allowed post-

CHAPTER 3. METHODOLOGY 23

processing of the durations such as calculating the average and deviations.
We also changed the accuracy of the reported durations from milliseconds to
microseconds.

3.3.1 Accuracy

To get this accuracy we used a timer with a frequency of 14 MHz. Although
this should result in an accuracy around 0.1 µs (since there are 14 ticks per
µs), all values have been rounded to the nearest µs. Testing however showed
that there is some variance that sometimes makes the result less accurate
than 1 µs. For short measurements (e.g., 50 µs), the measured durations
varies less than 1 µs. For longer durations the error is larger as the variation
scales linearly with the duration. When the duration should be 125 ms then
the deviation is already a bit larger than 200 µs.

However, we still believe that the tool used for the measurement was accurate
enough. We did not make long measurements. Each slot is only 15 ms long
and we only need to measure individual parts of this slot which are all less
than 4 ms. Although the variations seen here are still 8 µs between the lowest
and highest value, the testing also showed that the results are equally spread.
The average always lies at the center of the interval and by doing enough
measurements we are confident that the final result is still accurate up to 1
µs.

3.3.2 Code

The code running on the OpenMote-CC2538 simply has to make the PD2
pin low at the start of the measurement and high at the end. The pin is
also made high directly before the start of the measurement. This is done to
avoid wrong measurements where the code path does not reach the end each
time it passes the start. The durations in these cases will be much higher
than the expected value (e.g., 15 ms when the code is executed every slot),
so these high values are filtered out on the computer.

CHAPTER 3. METHODOLOGY 24

The code below is what was placed around the part of the project for which
the duration was to be measured.

// End prev ious measurement i f not s topped ye t
gpio_on (BSP_PIND_PORT, BSP_PIND_2) ;

// S ta r t a new measurement
gpio_of f (BSP_PIND_PORT, BSP_PIND_2) ;

// Execute code o f which we want to know the durat ion

// End the measurement
gpio_on (BSP_PIND_PORT, BSP_PIND_2) ;

Chapter 4

Model

In this chapter we introduce the model by showing the different states in
each time slot type and introduce the formula to calculate the consumption
of each slot.

4.1 Time slots

Figure 4.1 presents a general overview of the activity of a transmitter mote
during a TxDataRxAck time slot and a receiver mote during a RxDataTxAck
time slot.

Our model divides each time slot into different states. Some of the states
seen in Figure 4.1 consist of a part where the CPU is active and a part where
the CPU is sleeping, which is seen as two different states in our model. The
state of the radio in our model only changes at moments when the CPU

Figure 4.1: General states in TxDataRxAck and RxDataTxAck time slots

25

CHAPTER 4. MODEL 26

State in slot CPU State Radio State

TxDataOffsetStart Active Sleep

TxDataOffset Sleep Sleep

TxDataPrepare Active Idle

TxDataReady Sleep Idle

TxDataDelayStart Active Idle

TxDataDelay Sleep Tx

TxDataStart Active Tx

TxData Sleep Tx

RxAckOffsetStart Active Sleep

RxAckOffset Sleep Sleep

RxAckPrepare Active Idle

RxAckReady Sleep Idle

RxAckListenStart Active Idle

RxAckListen Sleep Listen

RxAckStart Active Rx

RxAck Sleep Rx

TxProc Active Idle

Sleep Sleep Sleep

Table 4.1: States in a TxDataRxAck slot

state changes. This is of course a simplification as in the real world the radio
state changes a little before or after this moment, typically while the CPU
is active.

We only discuss the TxDataRxAck time slot in full detail. The other slots are
similar and we only talk about the differences with the TxDataRxAck slot.
Tables containing all states in each time slot type are provided in Appendix
A.

4.1.1 TxDataRxAck

Table 4.1 and Figure 4.2 illustrate the different states in a TxDataRxAck slot
and what the CPU and radio states are during each moment. In the figure,

CHAPTER 4. MODEL 27

Figure 4.2: States in a TxDataRxAck slot

the CPU has two states (Sleep and Active) while the radio has three states
(Sleep, Idle and Active). The radio being active refers to it either being in
Listen, Rx or Tx mode.

At the beginning of each time slot, the CPU wakes up and performs the tasks
required for any slot. This includes incrementing the ASN and scheduling
the next state depending on the type of the slot. The CPU then sleeps again
during TxDataOffset until the moment the radio is needed.

During TxDataPrepare, the radio wakes up, the channel is set and the bytes
to transmit are loaded into the radio. The duration of this state is variable
mainly because the time to load the bytes depend on the frame size. Since
this state always starts at the same offset and has a variable duration, there
is some time left between the TxDataPrepare and the actual transmission.
During this TxDataReady state, the radio is in Idle mode while waiting until
it is time to transmit. To minimize the energy consumption of the mote, the
duration of the TxDataReady state should thus be as small as possible.

The first byte behind the SFD has to be transmitted exactly TxOffset ms
after the start of the time slot. In order to do so, the time required to switch
the radio from Idle to Tx mode has to be taken into account. The duration
of the TxDataDelay equals the time between the Tx command being sent to
the radio and the moment the SFD has been transmitted.

After the RxAckOffset that follows where the mote sleeps, the RxAckPrepare
state then prepares the radio again by waking it up and setting the correct
channel. Any time less than the maximum duration of RxAckPrepare is then
spent in the RxAckReady state.

The ACK is transmitted exactly TxAckDelay ms after the end of the Tx-
Data state. Because the clocks of the transmitting and receiving mote may
not be perfectly in sync, the ACK might arrive slightly earlier or later than
expected. The radio is thus turned on at the start of the RxAckListen instead

CHAPTER 4. MODEL 28

Figure 4.3: States in a RxDataTxAck slot

of just in time for the data. If no ACK is received during the Acknowledg-
ment Guard Time (AGT) period, the mote turns off the radio and considers
the transmission failed. The duration of the AGT is defined as 1000 µs in
OpenWSN. When the clocks between the motes are perfectly in sync, the
RxAckListen state has a duration of AGT/2 plus the time to change the
radio from Idle mode to Rx mode (which is considered to be instantaneous
in OpenWSN).

During the TxProc state, the ACK is read from the radio and the trans-
mission is considered successfully when the ACK is valid. The mote also
synchronizes its clock based on the offset between TxAckDelay and the ac-
tual data reception time, if the ACK came from its parent in the network
graph. For the remaining part of the time slot, both the CPU and radio are
in Sleep mode.

4.1.2 RxDataTxAck

Figure 4.3 illustrates the different states in a RxDataTxAck slot. This time
slot can be considered the opposite of the TxDataRxAck. The states to
handle the data in TxDataRxAck are found in handling the ACK in Rx-
DataTxAck and vice versa.

The guard time for the data is however larger than the AGT that is used for
ACKs. The Packet Guard Time (PGT) determines how long the radio listens
for the data before the radio is turned off. When no data is received during
the PGT period, we classify the time slot as RxIdle instead of RxDataTxAck.
In OpenWSN, the PGT is defined as 2600 µs.

CHAPTER 4. MODEL 29

Figure 4.4: States in a TxData slot

Figure 4.5: States in a RxData slot

4.1.3 TxData and RxData

When no ACKs are required (e.g., for broadcasts), only the first half of the
time slot is used. During the TxData and RxData slots, the mote sleeps once
the data has been transmitted or received. The states in the TxData and
RxData slots are shown in Figure 4.4 and Figure 4.5.

4.1.4 RxIdle

When the transmitter has no data to send, the slot that could have been
a TxDataRxAck becomes a Sleep slot. But on the receiver side a different
type of slot is needed to represent the behavior of the mote. The RxIdle slot
occurs when the receiver expects data but does not receive anything. This
behavior is not an error, it simply means that a slot was reserved but the
transmitter did not have any data to send at that moment. Figure 4.6 shows
the states in an RxIdle slot.

Figure 4.6: States in a RxIdle slot

CHAPTER 4. MODEL 30

Figure 4.7: States in a TxDataRxAckMissing slot

4.1.5 Sleep

In time slots where no data has to be transmitted or received, the mote can
sleep during the whole slot. The mote only briefly wakes up at the start of
the slot to e.g., increment the ASN.

4.1.6 TxDataRxAckMissing

There are many error states in OpenWSN. The code would get in such er-
ror state when e.g., the radio remains active too long or when the prepare
state lasts longer than the maximum allowed time. It is unlikely that the
code would end up in most of these error states unless when there is a con-
figuration issue. There is however one error state which is likely to occur
eventually: a missing ACK. In the TxDataRxAck slot, data is transmitted
and an ACK is received. In the slot that we refer to as TxDataRxAck-
Missing, the ACK is expected but not received. The different states during
this TxDataRxAckMissing slot are shown in Figure 4.7.

4.2 Building the model

With all states per time slot identified and with the consumptions and du-
rations during each state measured, the model can be built.

The consumption of a time slot is given by the following formula. The re-
sulting consumption is expressed as the charge drawn from the battery, in
Coulombs.

SlotConsumption =
∑

State∈Slot

duration(State) ∗ current(State)

CHAPTER 4. MODEL 31

If we apply this for all slot types and shorten the notation of the terms
then we find the formula below which calculates the charge drawn for each
different time slot.

∀Slot ∈ SlotTypes : QSlot =
∑

State∈Slot

∆tState ∗ IState

The unit of the duration is ms while the unit of the current is mA. This
means that the unit of the resulting charge is µC.

The model with consumptions of each slot type could be used in a simula-
tion where the consumption is increased each slot as the simulation runs.
To calculate the consumption over time, having a model of the entire slot
frame is more practical. We did not build such a model ourselves but instead
relied on the existing model described in the “Slot-Frame Energy Consump-
tion Modeling” from the “A Realistic Energy Consumption Model for TSCH
Networks” paper [23]. The charge drawn per slot in their calculations can
be replaced by the measurements performed in this thesis and the formula
above.

Our slot model contains the information for any packet size. Formulas con-
taining (NBSent/MaxPktSz)∗Qslot in the slot-frame model (where NBSent
is the amount of bytes sent) could be replaced by just Qslot_NBSent where
Qslot_NBSent is the slot consumption calculated using the number of bytes
sent. This is unlike Qslot, which was calculated with packets of maximum
size in that work.

4.3 Support for different hardware

Since the model has so many inputs, in order to use it for different hardware,
many numbers might have to be adapted. This is necessary if a highly
accurate simulation is needed with such hardware. The model can however
be easily simplified to be used with different hardware more quickly, at the
cost of some accuracy. By setting the duration of short states to 0, the model
becomes easier to change as only the states that have the most impact on
the consumption will have to be updated. Alternatively the duration can

CHAPTER 4. MODEL 32

be estimated instead of measured as most durations are very similar to the
ones we measured with the OpenMote hardware. The consumption of CPU
and radio also do not have to be measured, the values could be taken from
the datasheet. The result is a slightly less accurate model, but no or few
measurements have to be made to be able to use the model to simulate any
hardware.

Chapter 5

Results

In this chapter we discuss the results of our measurements and experimentally
verify the accuracy of the model.

5.1 State durations

Using the setup explained in Section 3.3, we measured the duration of each
state in every time slot where the CPU is active. The durations in which
the CPU is sleeping could then be trivially calculated. All measured and
calculated values can be found the tables in Appendix B.

States do not always have the exact same duration for a variety of reasons.
There could be multiple code branches (different execution paths), the packet
size could influence it or the duration of an operation can simply be variable
(e.g., waking up the CC1200 chip). Multiple measurements had to be made
to find a single duration that could be associated with the state.

Changing the CC1200 mode from Sleep to Idle takes between 246 and 343 µs,
which causes every state where the radio wakes up to have a variable duration.
It only required a few measurements to find that the median for waking
up is 268 µs. However, we decided to use the average value instead of the
median because it would result in slightly more accurate energy consumption

33

CHAPTER 5. RESULTS 34

prediction. To avoid being susceptible to outliers, we measured the wakeup
time over ten thousand times and found an average of 273 µs.

For states with multiple code branches, the average duration was also taken.
Since these are states where the radio is not active, these small variations on
the duration only have a small impact on the total slot consumption.

To measure states where packets are loaded to and read from the radio, we
measured the duration before and after the radio is accessed. We then sepa-
rately measured the communication with the radio for different packet sizes
(0 to 125 bytes with steps of 25 bytes). We performed linear interpolation on
the measured durations to come up with a formula that works for all packet
sizes.

The duration of transmitting and receiving also depends on the packet size.
Since the radio has a baud rate of 250 kbps, the time to transmit one bit is
4 µs, which makes the time to transmit a byte 32 µs. We thus simply have
to multiple the amount of transmitted bytes with 32 µs to find the duration.
The PHY header byte and 2 bytes CRC also have to be included as they are
sent with the packet. We measured the time between the start of frame and
end of frame interrupts to verify that we can use this calculation and found
that on average the error was only 0.13% with our measurements.

To model the guard time we assumed that the clocks are in sync. The packet
thus always arrives exactly in the center of guard interval in our model.

5.2 Device state consumption

Using the setup mentioned in Section 3.2.2, we measured the consumption
of the OpenMote-CC2538 while connected to the OpenUSB during different
device states. Since the CPU and radio are the two components responsi-
ble for the majority of the energy consumption, these device states are all
combinations between CPU and radio modes. Instead of measuring the con-
sumption of the CPU and radio separately, we measured the consumption
of the entire device. The result is that any energy consumption not related
to the CPU or radio (e.g., SPI or timers) are measured as part of the CPU

CHAPTER 5. RESULTS 35

CPU state Radio state Consumption (in mA)

Active Off 18.5253

Active Listen 36.0883

Active Rx 32.1613

Active Tx 36.1228

Sleep Off 12.1690

Sleep Listen 29.6143

Sleep Rx 25.5274

Sleep Tx 29.6779

Table 5.1: Consumption of different device states when using the CC2538 radio

usage. This allows a slightly more accurate energy prediction compared to
models that ignore the other components.

5.2.1 2.4 GHz radio

Table 5.1 shows the consumption of different device states when the CC2538
radio is being used. The values for the Tx state were measured when the
transmit power of the radio was set to 0 dBm. When the transmit power is
set to 3 dBm (the current default in OpenWSN), the consumption of the Tx
states becomes 37.9312 and 31.4720 mA (for the CPU in Active and Sleep
state respectively).

Unlike shown earlier in Table 4.1, there are no Sleep and Idle radio states
here, only an Off state. This is because the CC2538 consists of both the CPU
and radio and the radio does not have a separate Sleep state. In this case, our
model which works with Sleep and Idle states will consider the consumptions
of both states to equal the consumption of the Off state.

As expected, the difference in consumption between the CPU being active or
sleeping is almost identical for all radio states. On average the CPU consumes
6.4737 mA more when active.

The CPU usage while sleeping is very high. This is caused because the
OpenMote-CC2538 code in OpenWSN currently uses the lowest possible sleep

CHAPTER 5. RESULTS 36

CPU state Radio state Consumption (in mA)

Active Sleep 18.5977

Active Idle 21.0067

Active Listen 43.3729

Active Rx 57.3220

Active Tx 59.3448

Sleep Sleep 12.4005

Sleep Idle 15.0322

Sleep Listen 38.2895

Sleep Rx 50.7769

Sleep Tx 53.6732

Table 5.2: Consumption of different device states when using the CC1200 radio

mode. The consumption dropped to 1.6420 mA when entering deep sleep
(SYS_CTRL_PM_2 specifically). This is still high because the OpenUSB
is still consuming power. Since the OpenWSN version that uses the CC2538
does not access the CC1200 at all, the CC1200 chip is still in Idle mode
which is where this extra consumption is coming from. When the OpenMote-
CC2538 is not connected to the OpenUSB (which contained this CC1200
chip), the measured consumption during deep sleep drops to only 0.0317 mA.
With future updates to OpenWSN it is thus expected that the consumption of
the CPU in Sleep state will be more comparable to that of different hardware.

5.2.2 sub-1GHz radio

Table 5.2 shows the consumption of different device states when the CC1200
radio is being used. The values for the Tx state were measured when the
transmit power of the radio was set to 0 dBm. When the transmit power is
set to 14 dBm (the current default in OpenWSN), the consumption of the Tx
states become 102.7338 and 96.6123 mA (for the CPU in Active and Sleep
state respectively).

The difference between the CPU in Active and Sleep mode vary more in these
measurements compared to when using the CC2538 radio. The difference is

CHAPTER 5. RESULTS 37

on average 5.89436 mA in the measurements with the CC1200 radio instead
of being around 6.4737 mA as expected. One reason is that the CC1200 con-
sumption was not always the same every time we measured the consumption,
leading to larger errors between measurements. Another reason is that due
to the SPI peripheral and certain pins that have to be kept high or low, the
difference between the CPU being in Active and Sleep mode can simply be
different when using the CC2538 or CC1200 radio.

When both the CPU and Radio are in Sleep state, the consumption is still
high because the CPU still has a high energy consumption. If the CPU is
put in deep sleep, the consumption drops to 0.7611 mA. The consumption
could still be lower if the radio went into a deeper sleep mode as well (SLEEP
instead of XOFF).

5.3 Slot consumption

With the duration and consumption of each state we could calculate the
consumption for each type of slot. We also measured the consumption of
entire slots to experimentally verify the correctness of our calculated values
in our model. Table 5.3 shows the values we measured and calculated for
each of the slot types for both radios. We configured both radios to have a
transmit power of 0 dBm and sent packets of 127 bytes (the maximum packet
size when including the CRC bytes).

As seen in Table 5.3, the difference between the measured and calculated
values is relatively small. The main contributors to these differences are
small measurement errors and the variations in guard time duration. In
the measured data, the guard time is a little smaller or larger than in the
calculated data, which assumes perfectly synchronized clocks. On average
the difference is only 1.3 µC or 0.457%, which shows that our model provides
a good representation for real-life scenarios.

Figure 5.1 shows the current during a TxDataRxAck time slot according to
both the model and the measurements. Comparisons for all time slot types
can be found in Appendix C. The peaks on the graphs do not perfectly

CHAPTER 5. RESULTS 38

Slot type Measured Calculated

CC2538 CC1200 CC2538 CC1200

TxDataRxAck 283.34 446.72 284.60 445.17

RxDataTxAck 287.41 458.68 286.22 457.78

TxData 262.07 386.76 262.78 388.01

RxData 265.39 399.98 263.09 397.01

RxIdle 229.61 260.97 229.33 261.15

Sleep 184.19 183.63 182.90 186.36

TxDataRxAckMissing 280.06 417.35 279.89 418.85

Table 5.3: Measured and calculated consumption for each slot type, in µC

Figure 5.1: Comparison between calculated (left) and measured (right) TxDataRx-

Ack time slot when using the CC2538 (top) and CC1200 (bottom) radios

CHAPTER 5. RESULTS 39

Figure 5.2: Topology used while comparing the consumption of a slot frame

match, because the model simplified certain states. The radio state may be
changed while the CPU is active, causing the CPU and radio to be active
at the same time, while the model might only consider the radio as active
once the CPU goes to sleep. This results in a peak in the measured time
slot where there is no peak in the model. There is only one state that was
not modelled at all. In the images of the CC1200 radio there are peaks at
the end of the TxDataPrepare and RxAckPrepare states. These are caused
because the radio is manually put in Calibration mode. Something like this
does not explicitly happen with each radio and is subject to change (e.g., the
CPU does not always have to remain active during this state), so we decided
not to model it and assume the radio is still in Idle mode.

5.4 Slot frame consumption

We also compared the consumption calculated by our model with measure-
ments for entire slot frames.

We set up a network of three motes with a fixed topology, as shown in figure
5.2. The leaf mote was configured to send one packet of 127 bytes (including
CRC) every 2 seconds. Slot frames consisted of 51 time slots of which one
was configured for data from the leaf to the relay mote and one for data from
the relay to the root mote. The first time slot in the slot frame is reserved
for advertisements and used to send Enhanced Beacon frames. We did not
look at the broadcasted beacons and DAO packets that were send every 30
and 60 seconds, we only focussed on the packets coming from the leaf mote.
The first time slot in each slot frame is thus considered to be of type RxIdle.

Since beacons and similar packets were ignored, the consumption values may

CHAPTER 5. RESULTS 40

not offer a good prediction for how long the battery of the mote will last. The
goal of the comparison of slot frame consumption was however to verify how
accurate the model is by calculating and measuring similar circumstances. It
is thus not important that the scenario with only 3 motes is less likely and
that the activity in a slot frame is simplified.

The slot frame of the leaf mote always consists of 1 RxIdle slot and at least
49 Sleep slots. The final slot will be either TxDataRxAck when there is data
to send or another Sleep slot. Since there are 51 slots in a slot frame and
every time slot lasts 15 ms, the duration of each slot frame is 765 ms. Since
a packet is send every 2 seconds, the consumption of the leaf slot frame can
be considered as follows:

Qleaf = QRxIdle + 49 ∗QSleep + (0.3825 ∗QTxDataRxAck + 0.6175 ∗QSleep)

The slot frame of the relay mote can be determined in a similar way. There
are RxIdle and Sleep slots when no packet is received, while there are Rx-
DataTxAck and TxDataRxAck slots when a packet was received and for-
warded. The first time slot is also of type RxIdle and the remaining 48 slots
are always Sleep slots. The formula for the consumption of the slot frame of
the relay mote thus becomes:

Qrelay = QRxIdle + 48 ∗QSleep +Qother

Qother = (0.3825 ∗ (QRxDataTxAck +QTxDataRxAck) + 0.6175 ∗ (QRxIdle +QSleep))

The root mote only has a single RX slot. Its consumption can thus be
represented by the following formula:

Qroot = QRxIdle + 49 ∗QSleep + (0.3825 ∗QRxDataTxAck + 0.6175 ∗QRxIdle)

We will however not focus on the consumption of the root mote. It is con-
nected to the computer and serves as a gateway to the internet, therefore
the mote typically does not run on batteries. Serial communication cannot
be disabled on this mote and the measured consumption would therefore not
fully correspond to our model.

We measured the consumption of the slot frames for the leaf and relay mote
and compared them with the values calculated through the model using the

CHAPTER 5. RESULTS 41

Mote type Measured Calculated

CC2538 CC1200 CC2538 CC1200

Leaf 9499.80 9580.50 9413.23 9678.14

Relay 9543.75 9742.71 9481.42 9828.15

Table 5.4: Measured and calculated slot frame consumption, in µC

above formulas. The result can be found in Table 5.4. On average the error
between the calculated and measured values are below 1% as expected. An
error of around 66.3 µC is normal based on our average error of 1.3 µC that
would occur in each of the 51 time slots. The error seems to be slightly
higher here however, mainly because the majority of time slots were Sleep
slots where the error per time slot was above average.

The comparison again shows that our model is quite good. For example,
the difference between the measured and calculated consumptions for the
Leaf mote for the CC2538 radio is only 0.91%. However, we have to be
careful with using these numbers to show how accurate the model is exactly.
Since the difference is small, the measurement errors will become relatively
large. A measurement error of only 0.1% on both the measured slot frame
consumption and the consumptions on which the calculated values are based,
could already cause the difference to be 0.71% instead of 0.91%.

Chapter 6

Conclusion

We have proposed a new energy model for time slots in OpenWSN that
takes all network-related CPU state changes into account. We have exper-
imentally verified that when inputting the durations and consumptions of
the OpenMote hardware, the calculated energy consumption by the model
is very close to the (measured) consumption of this hardware. In our setup
the error between the calculated and measured energy consumption was less
than 1%. This makes our model suitable for use in simulations. The ability
to calculate the consumption based on the packet size also improves upon
existing models that only provide the consumption of an entire time slot with
a packet of maximum size.

We also contributed a driver for the CC1200 radio chip on the OpenUSB
hardware to the OpenWSN firmware project, which allows experimenting on
the sub-1GHz band.

Our model provides accurate energy consumption predictions and is therefore
suitable for 6TiSCH simulations with OpenWSN.

6.1 Future work

Experimentally verifying the accuracy of our model over a long duration is
limited because the consumption while sleeping is so high. This is some-

42

CHAPTER 6. CONCLUSION 43

thing that should be looked at. Once the OpenMote-CC2538 platform code
is updated to allow deep sleep, the consumption for different states in the
model can be measured again. Comparisons can then be made between mea-
suring the consumption over a certain amount of time and calculating the
consumption with the model over the same duration.

The consumption of the CC1200 chip could also be reduced in the future by
going into SLEEP mode instead of XOFF mode. The CPU can also be put
in Sleep mode in almost all cases during radio calibration. These changes
will reduce the energy consumption of the OpenUSB so that it becomes more
useful to use this hardware.

Ultimately, the goal of the model is to be used in a simulation. It should
thus be integrated into the OpenSim part of the OpenVisualizer to be of
real use. The model code that calculates the consumption for the occurring
time slot is trivial, but it has to be integrated with the OpenSim code to be
called at the right moment. A simple implementation would keep a counter
on how much energy has been consumed since the start of the simulation,
the counter would be increased for each time slot that passes. The next step
would be to simulate a battery. Instead of just keeping track of the drawn
charge, the value is subtracted from the total battery capacity. When the
battery gets empty, the mote would be removed from the simulation.

Another place where the model can be used is in the 6TiSCH simulator
[28]. If the sleep consumption issues are fixed then the energy model used in
the simulator could be replaced by the model described in this thesis. The
energy consumption found by the simulation will then take the packet size
into account and be more accurate.

Bibliography

[1] D. Christin, A. Reinhardt, P. S. Mogre, R. Steinmetz, et al. Wireless
sensor networks and the internet of things: selected challenges. Pro-
ceedings of the 8th GI/ITG KuVS Fachgespräch Drahtlose sensornetze,
pages 31–34, 2009.

[2] J. M. Kahn, R. H. Katz, and K. S. J. Pister. Emerging challenges:
Mobile networking for "smart dust". Journal of Communications and
Networks, 2(3):188–196, Sept 2000.

[3] P. Huang, L. Xiao, S. Soltani, M. W. Mutka, and N. Xi. The evolution
of mac protocols in wireless sensor networks: A survey. IEEE Commu-
nications Surveys Tutorials, 15(1):101–120, First 2013.

[4] Ieee standard for local and metropolitan area networks–part 15.4: Low-
rate wireless personal area networks (lr-wpans). IEEE Std 802.15.4-2011
(Revision of IEEE Std 802.15.4-2006), pages 1–314, Sept 2011.

[5] Ieee standard for local and metropolitan area networks–part 15.4: Low-
rate wireless personal area networks (lr-wpans) amendment 1: Mac sub-
layer. IEEE Std 802.15.4e-2012 (Amendment to IEEE Std 802.15.4-
2011), pages 1–225, April 2012.

[6] L. Doherty, W. Lindsay, and J. Simon. Channel-specific wireless sensor
network path data. In 2007 16th International Conference on Computer
Communications and Networks, pages 89–94, Aug 2007.

[7] T. Watteyne, A. Mehta, and K. Pister. Reliability through frequency
diversity: why channel hopping makes sense. In Proceedings of the 6th

44

BIBLIOGRAPHY 45

ACM symposium on Performance evaluation of wireless ad hoc, sensor,
and ubiquitous networks, pages 116–123. ACM, 2009.

[8] T. Watteyne, M. Palattella, and L. Grieco. Using ieee 802.15.4e time-
slotted channel hopping (tsch) in the internet of things (iot): Problem
statement. Technical report, 2015.

[9] S. Petersen and S. Carlsen. Wirelesshart versus isa100.11a: The for-
mat war hits the factory floor. IEEE Industrial Electronics Magazine,
5(4):23–34, Dec 2011.

[10] X. Vilajosana, P. Tuset, T. Watteyne, and K. Pister. Openmote: open-
source prototyping platform for the industrial iot. In International Con-
ference on Ad Hoc Networks, pages 211–222. Springer, 2015.

[11] Texas Instruments. Achieving Optimum Radio Range. http://www.ti.
com/lit/an/swra479/swra479.pdf, March 2015.

[12] P. Tuset, X. Vilajosana, and T. Watteyne. Openmote+: a range-agile
multi-radio mote. In EWSN, pages 333–334, 2016.

[13] D. Dujovne, T. Watteyne, X. Vilajosana, and P. Thubert. 6tisch: de-
terministic ip-enabled industrial internet (of things). IEEE Communi-
cations Magazine, 52(12):36–41, December 2014.

[14] J. Hui and P. Thubert. Compression Format for IPv6 Datagrams over
IEEE 802.15.4-Based Networks. Technical Report 6282, September
2011.

[15] A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister, R. Struik, JP. Vasseur,
and R. Alexander. RPL: IPv6 Routing Protocol for Low-Power and
Lossy Networks. Technical Report 6550, March 2012.

[16] Z. Shelby, K. Hartke, and C. Bormann. The Constrained Application
Protocol (CoAP). Technical Report 7252, June 2014.

[17] Q. Wang, X. Vilajosana, and T. Watteyne. 6tsch operation sublayer
(6top). 2013.

http://www.ti.com/lit/an/swra479/swra479.pdf
http://www.ti.com/lit/an/swra479/swra479.pdf

BIBLIOGRAPHY 46

[18] T. Watteyne, X. Vilajosana, B. Kerkez, F. Chraim, K. Weekly, Q. Wang,
S. Glaser, and K. Pister. Openwsn: a standards-based low-power wire-
less development environment. Transactions on Emerging Telecommu-
nications Technologies, 23(5):480–493, 2012.

[19] Wireshark Foundation. Wireshark. https://www.wireshark.org.

[20] D. De Guglielmo, B. Al Nahas, S. Duquennoy, T. Voigt, and G. Anastasi.
Analysis and experimental evaluation of ieee 802.15.4e tsch csma-ca al-
gorithm. IEEE Transactions on Vehicular Technology, 66(2):1573–1588,
Feb 2017.

[21] G. Z. Papadopoulos, A. Mavromatis, X. Fafoutis, N. Montavont,
R. Piechocki, T. Tryfonas, and G. Oikonomou. Guard time optimi-
sation and adaptation for energy efficient multi-hop tsch networks. In
2016 IEEE 3rd World Forum on Internet of Things (WF-IoT), pages
301–306, Dec 2016.

[22] I. Juc, O. Alphand, R. Guizzetti, M. Favre, and A. Duda. Energy
consumption and performance of ieee 802.15.4e tsch and dsme. In 2016
IEEE Wireless Communications and Networking Conference, pages 1–7,
April 2016.

[23] X. Vilajosana, Q. Wang, F. Chraim, T. Watteyne, T. Chang, and K. S. J.
Pister. A realistic energy consumption model for tsch networks. IEEE
Sensors Journal, 14(2):482–489, Feb 2014.

[24] J. M. Munoz. jmmunoz86/openwsn-fw develop_fw-527 branch. https:
//github.com/jmmunoz86/openwsn-fw/tree/develop_FW-527.

[25] P. Tuset. Openmote/openwsn-fw develop_fw-493 branch. https://

github.com/OpenMote/openwsn-fw/tree/develop_FW-493.

[26] Texas Instruments. CC1200 Low-Power, High-Performance RF
Transceiver. http://www.ti.com/lit/ds/symlink/cc1200.pdf, July
2013.

[27] Keysight Technologies. N6700 modular power system family
data sheet. http://literature.cdn.keysight.com/litweb/pdf/

5989-6319EN.pdf, 2016.

https://www.wireshark.org
https://github.com/jmmunoz86/openwsn-fw/tree/develop_FW-527
https://github.com/jmmunoz86/openwsn-fw/tree/develop_FW-527
https://github.com/OpenMote/openwsn-fw/tree/develop_FW-493
https://github.com/OpenMote/openwsn-fw/tree/develop_FW-493
http://www.ti.com/lit/ds/symlink/cc1200.pdf
http://literature.cdn.keysight.com/litweb/pdf/5989-6319EN.pdf
http://literature.cdn.keysight.com/litweb/pdf/5989-6319EN.pdf

BIBLIOGRAPHY 47

[28] T. Watteyne, K. Muraoka, N. Accettura, and X. Vilajosana. The 6tisch
simulator. https://bitbucket.org/6tisch/simulator, 2017.

https://bitbucket.org/6tisch/simulator

Appendices

48

Appendix A

Time slot states

The tables in this appendix show the different states for each type of time
slot and in which state the CPU and radio are in at that time.

State in slot CPU State Radio State

SleepStart Active Sleep

Sleep Sleep Sleep

Table A.1: States in a Sleep slot

49

APPENDIX A. TIME SLOT STATES 50

State in slot CPU State Radio State

RxDataOffsetStart Active Sleep

RxDataOffset Sleep Sleep

RxDataPrepare Active Idle

RxDataReady Sleep Idle

RxDataListenStart Active Idle

RxDataListen Sleep Listen

RxProc Active Sleep

Sleep Sleep Sleep

Table A.2: States in a RxIdle slot

State in slot CPU State Radio State

RxDataOffsetStart Active Sleep

RxDataOffset Sleep Sleep

RxDataPrepare Active Idle

RxDataReady Sleep Idle

RxDataListenStart Active Idle

RxDataListen Sleep Listen

RxDataStart Active Rx

RxData Sleep Rx

TxAckOffsetStart Active Idle

TxAckOffset Sleep Sleep

TxAckPrepare Active Idle

TxAckReady Sleep Idle

TxAckDelayStart Active Idle

TxAckDelay Sleep Tx

TxAckStart Active Tx

TxAck Sleep Tx

RxProc Active Sleep

Sleep Sleep Sleep

Table A.3: States in a RxDataTxAck slot

APPENDIX A. TIME SLOT STATES 51

State in slot CPU State Radio State

TxDataOffsetStart Active Sleep

TxDataOffset Sleep Sleep

TxDataPrepare Active Idle

TxDataReady Sleep Idle

TxDataDelayStart Active Idle

TxDataDelay Sleep Tx

TxDataStart Active Tx

TxData Sleep Tx

RxAckOffsetStart Active Sleep

RxAckOffset Sleep Sleep

RxAckPrepare Active Idle

RxAckReady Sleep Idle

RxAckListenStart Active Idle

RxAckListen Sleep Listen

RxAckStart Active Rx

RxAck Sleep Rx

TxProc Active Idle

Sleep Sleep Sleep

Table A.4: States in a TxDataRxAck slot

State in slot CPU State Radio State

TxDataOffsetStart Active Sleep

TxDataOffset Sleep Sleep

TxDataPrepare Active Idle

TxDataReady Sleep Idle

TxDataDelayStart Active Idle

TxDataDelay Sleep Tx

TxDataStart Active Tx

TxData Sleep Tx

TxProc Active Sleep

Sleep Sleep Sleep

Table A.5: States in a TxData slot

APPENDIX A. TIME SLOT STATES 52

State in slot CPU State Radio State

RxDataOffsetStart Active Sleep

RxDataOffset Sleep Sleep

RxDataPrepare Active Idle

RxDataReady Sleep Idle

RxDataListenStart Active Idle

RxDataListen Sleep Listen

RxDataStart Active Rx

RxData Sleep Rx

RxProc Active Idle

Sleep Sleep Sleep

Table A.6: States in a RxData slot

State in slot CPU State Radio State

TxDataOffsetStart Active Sleep

TxDataOffset Sleep Sleep

TxDataPrepare Active Idle

TxDataReady Sleep Idle

TxDataDelayStart Active Idle

TxDataDelay Sleep Tx

TxDataStart Active Tx

TxData Sleep Tx

RxAckOffsetStart Active Sleep

RxAckOffset Sleep Sleep

RxAckPrepare Active Idle

RxAckReady Sleep Idle

RxAckListenStart Active Idle

RxAckListen Sleep Listen

TxProc Active Sleep

Sleep Sleep Sleep

Table A.7: States in a TxDataRxAckMissing slot

Appendix B

Duration of states in time slot

The tables in this appendix show the duration of every state for each time
slot type. The durations of the states where the cpu is active were measured
or are an average of multiple measured values. The time spent sleeping
however depends on the active duration and some timing constants. The
timing constants used in OpenWSN are provided and explained in Table
B.1.

53

APPENDIX B. DURATION OF STATES IN TIME SLOT 54

Constant Duration Description

CC2538 CC1200

DelayTx 366 427 Time between instructing radio to trans-
mit and SFD leaving the radio.

DelayRx 0 0 Time between instructing radio to listen
and radio being ready to receive.

MaxTxDataPrepare 2014 2014 Maximum allowed duration of the Tx-
DataPrepare state.

MaxRxDataPrepare 1007 1007 Maximum allowed duration of the Rx-
DataPrepare state.

MaxTxAckPrepare 671 1007 Maximum allowed duration of the TxAck-
Prepare state.

MaxRxAckPrepare 305 915 Maximum allowed duration of the RxAck-
Prepare state.

TsLongGT 1300 Half of the PGT. Time between radio
starting to listen and expected data re-
ception.

TsShortGT 500 Half of the AGT. Time between radio
starting to listen and expected ACK re-
ception.

TsTxOffset 4000 Time between start of time slot and the
SFD leaving the radio when transmitting
the data.

TsTxAckDelay 4606 Time between end of data transmission
and the SFD leaving the radio when trans-
mitting the ACK.

TsSlotDuration 15000 Duration of each time slot.

Table B.1: Timing constants used in OpenWSN, in µs

State in slot Duration (CC2538 radio) Duration (CC1200 radio)

SleepStart 57 57

Sleep 14943 14943

Table B.2: Duration of states in the Sleep slot, in µs

APPENDIX B. DURATION OF STATES IN TIME SLOT 55

State in slot Duration (CC2538 radio) Duration (CC1200 radio)

RxDataOffsetStart 126 126

RxDataOffset 1567 1567

RxDataPrepare 38 676

RxDataReady 969 331

RxDataListenStart 17 58

RxDataListen 2583 2542

RxProc 25 118

Sleep 9675 9582

Table B.3: Duration of states in the RxIdle slot, in µs

State in slot Duration (CC2538 radio) Duration (CC1200 radio)

RxDataOffsetStart 126 126

RxDataOffset 1567 1567

RxDataPrepare 38 676

RxDataReady 969 331

RxDataListenStart 17 58

RxDataListen 1283 1242

RxDataStart 17 15

RxData (3 + pktSize) ∗ 32− 17 (3 + pktSize) ∗ 32− 15

TxAckOffsetStart 126 + (pktSize ∗ 0.91) 362 + (pktSize ∗ 8.439)

TxAckOffset 3443− (pktSize ∗ 0.91) 2810− (pktSize ∗ 8.439)

TxAckPrepare 153 930

TxAckReady 518 77

TxAckDelayStart 17 58

TxAckDelay 349 369

TxAckStart 16 15

TxAck 880 881

RxProc 94 135

Sleep 5308− (pktSize ∗ 32) 5267− (pktSize ∗ 32)

Table B.4: Duration of states in the RxDataTxAck slot, in µs

APPENDIX B. DURATION OF STATES IN TIME SLOT 56

State in slot Duration (CC2538 radio) Duration (CC1200 radio)

TxDataOffsetStart 105 105

TxDataOffset 1515 1454

TxDataPrepare 60 + (pktSize ∗ 0.875) 738 + (pktSize ∗ 8.152)

TxDataReady 1954− (pktSize ∗ 0.875) 1276− (pktSize ∗ 8.152)

TxDataDelayStart 17 58

TxDataDelay 349 369

TxDataStart 16 16

TxData (3 + pktSize) ∗ 32− 16 (3 + pktSize) ∗ 32− 16

RxAckOffsetStart 32 75

RxAckOffset 3769 3116

RxAckPrepare 38 587

RxAckReady 267 328

RxAckListenStart 17 58

RxAckListen 483 442

RxAckStart 16 15

RxAck 880 881

TxProc 225 619

Sleep 5177− (pktSize ∗ 32) 4783− (pktSize ∗ 32)

Table B.5: Duration of states in the TxDataRxAck slot, in µs

State in slot Duration (CC2538 radio) Duration (CC1200 radio)

TxDataOffsetStart 105 105

TxDataOffset 1515 1454

TxDataPrepare 60 + (pktSize ∗ 0.875) 738 + (pktSize ∗ 8.152)

TxDataReady 1954− (pktSize ∗ 0.875) 1276− (pktSize ∗ 8.152)

TxDataDelayStart 17 58

TxDataDelay 349 369

TxDataStart 16 16

TxData (3 + pktSize) ∗ 32− 16 (3 + pktSize) ∗ 32− 16

TxProc 72 109

Sleep 10832− (pktSize ∗ 32) 10795− (pktSize ∗ 32)

Table B.6: Duration of states in the TxData slot, in µs

APPENDIX B. DURATION OF STATES IN TIME SLOT 57

State in slot Duration (CC2538 radio) Duration (CC1200 radio)

RxDataOffsetStart 126 126

RxDataOffset 1567 1567

RxDataPrepare 38 676

RxDataReady 969 331

RxDataListenStart 17 58

RxDataListen 1283 1242

RxDataStart 17 15

RxData (3 + pktSize) ∗ 32− 17 (3 + pktSize) ∗ 32− 15

RxProc 198 + (pktSize ∗ 0.91) 488 + (pktSize ∗ 8.439)

Sleep 10706− (pktSize ∗ 31.09) 10416− (pktSize ∗ 23.561)

Table B.7: Duration of states in the RxData slot, in µs

State in slot Duration (CC2538 radio) Duration (CC1200 radio)

TxDataOffsetStart 105 105

TxDataOffset 1515 1454

TxDataPrepare 60 + (pktSize ∗ 0.875) 738 + (pktSize ∗ 8.152)

TxDataReady 1954− (pktSize ∗ 0.875) 1276− (pktSize ∗ 8.152)

TxDataDelayStart 17 58

TxDataDelay 349 369

TxDataStart 16 16

TxData (3 + pktSize) ∗ 32− 16 (3 + pktSize) ∗ 32− 16

RxAckOffsetStart 32 75

RxAckOffset 3769 3116

RxAckPrepare 38 587

RxAckReady 267 328

RxAckListenStart 17 58

RxAckListen 983 942

TxProc 44 137

Sleep 5754− (pktSize ∗ 32) 5661− (pktSize ∗ 32)

Table B.8: Duration of states in the TxDataRxAckMissing slot, in µs

Appendix C

Time slot comparion: model vs.

measurement

The figures displayed in this appendix show the consumption over time ac-
cording to the model and what we measured. Each time slot is compared for
both radios.

58

APPENDIX C. TIME SLOT COMPARION: MODEL VS. MEASUREMENT59

Figure C.1: Comparison between calculated (left) and measured (right) Tx-

DataRxAck time slot when using the CC2538 (top) and CC1200 (bottom) radios

Figure C.2: Comparison between calculated (left) and measured (right) Rx-

DataTxAck time slot when using the CC2538 (top) and CC1200 (bottom) radios

APPENDIX C. TIME SLOT COMPARION: MODEL VS. MEASUREMENT60

Figure C.3: Comparison between calculated (left) and measured (right) TxData

time slot when using the CC2538 (top) and CC1200 (bottom) radios

Figure C.4: Comparison between calculated (left) and measured (right) RxData

time slot when using the CC2538 (top) and CC1200 (bottom) radios

APPENDIX C. TIME SLOT COMPARION: MODEL VS. MEASUREMENT61

Figure C.5: Comparison between calculated (left) and measured (right) RxIdle

time slot when using the CC2538 (top) and CC1200 (bottom) radios

Figure C.6: Comparison between calculated (left) and measured (right) Sleep time

slot when using the CC2538 (top) and CC1200 (bottom) radios

	Introduction
	Time-Slotted Channel Hopping
	The importance of energy models
	Contributions
	Thesis organization

	Background and related work
	OpenMote hardware
	6TiSCH
	Energy models

	Methodology
	Firmware changes
	Measuring energy consumption
	Measuring state durations

	Model
	Time slots
	Building the model
	Support for different hardware

	Results
	State durations
	Device state consumption
	Slot consumption
	Slot frame consumption

	Conclusion
	Future work

	Bibliography
	Appendices
	Time slot states
	Duration of states in time slot
	Time slot comparion: model vs. measurement

